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ABSTRACT

The paper presents recent applications of an
output-only technique for modal identification of
systems with non-uniform mass, based on an
extension of the Karhunen-Loève Decomposition
(KLD). The method is here applied to identify the
aeroelastic modes of a wing with a concentrated
mass in a uniform flow. First, the spatial modal
shapes of the coupled system are evaluated as
the eigenfunctions (eigenvectors in the numeri-
cal approach) of the so-called extended Karhunen-
Loève integral operator, whose L2-kernel is the
time-averaged autocorrelation tensor of the elas-
tic displacement vector of the wing in the flow
(available from experiments or computer simula-
tions), multiplied by the density function of the
structure. Then, the identification of the aeroe-
lastic modal parameters is completed by consid-
ering the projection of the elastic displacement
vector onto the Karhunen-Loève eigenfunctions.
Frequency and damping associated to each aeroe-
lastic mode are evaluated as the solution of a
multi-dimensional minimization problem, based
on the optimal matching of the projection with
an ideal damped oscillator. The methodology is
here validated on the basis of a computer simu-
lation and different approaches are shown. The
output modes are in a very good agreement with
the aeroelastic modes used to build the numerical
input. Frequency and damping of each mode are
also in a good agreement with the relative input
values.

1. INTRODUCTION

The Karhunen-Loève Decomposition is a statis-
tical method for finding a base that cover the
optimal distribution of energy in the dynamics
of a continuum.

This method initially appeared in the signal
processing literature, where it was presented by
Hotelling (1933) as the Principal Component
Analysis (PCA). The theory behind the method
was taken again and studied in depth by Kosambi

(1943), by Loève (1945) and by Karhunen (1946).
Since it was applied by Lumley (1967) to un-
cover coherent structures in turbulent flows, it
has become a standard tool in turbulence stud-
ies (Holmes, 1996), where it is also known as the
Proper Orthogonal Decomposition (POD).

The theory proposed by Karhunen (1946) and
Loève (1945) is recently emerging as a power-
ful tool in structural dynamics and vibration. A
physical interpretation of the use of the KLD in
vibrations studies has been shown by Feeny et
al (1998). In structural dynamics, the method
consists in constructing the time-averaged spa-
tial autocorrelation tensor of the elastic displace-
ment field of the structure. Its spectral anal-
ysis produces a basis, as a set of orthonormal
eigenfunctions (eigenvectors, in the numerical ap-
proach) with the corresponding set of eigenval-
ues, which represent the energy content of each
mode. It has been shown (Feeny et al, 1998)
that for undamped and unforced structures with
constant density, the eigenfunctions given by the
standard KLD coincide with the natural modes
of vibration. Recently, the formulation has been
extended by Iemma et al (2006a) to the modal
identification of structures with non-uniform den-
sity. It is worth noting that this extension of the
KLD may be applied to the modal analysis of
n-dimensional structures (n = 1, 2, 3).

In aeroelasicity studies, POD techniques have
been widely used for reduced order models
(ROMs) determination. The reduction of aeroe-
lastic equations via KL basis has been shown,
e.g., by Romanowsky (1996). The technique has
been extended to nonlinear aeroelasticity, allow-
ing the identification of both aerodynamic and
aeroelastic KL-based ROMs (Pettit and Beran,
2000; Lucia et al, 2003).

In this work, the technique presented in Iemma
et al (2006a) is applied to the modal identi-
fication of an aeroelastic system. Specifically,
a wing with a concentrated mass in a uniform
flow is analyzed. Different approaches and meth-
ods are shown and discussed. A method for es-



timating frequency, damping and amplitude of
the complex vibration is also shown. In the
next sections, the general theory underlying the
Karhunen-Loève decomposition is recalled, with
emphasis on its application to quasi-periodic dy-
namical systems with non-uniform density. The
extension of the KLD to non-uniform density
structures is briefly outlined. The method for
estimating the relevant modal parameters is also
shown and the results, based on numerical exper-
iments, are presented.

2. EXTENDED KARHUNEN-LOÈVE
DECOMPOSITION

In this section we briefly outline the general the-
ory underlying the Karhunen-Loève decomposi-
tion with its extension to non-uniform density
structures. For the sake of simplicity, we recall
the formulation as apply for structural dynam-
ics. At the end of the section, the problem will
be extended to a coupled system in aeroelasticity.

In structural dynamics, the method introduced
by Karhunen and Loève is used to provide a
basis for the optimal representation of the dis-
placement vector u(x, t) of a vibrating inhomo-
geneous structure. The method provides a ba-
sis which is optimal, in the energy content sense,
for the representation of the displacement vec-
tor u(x, t) in the linear combination u(x, t) =∑n

k=1 βk(t) ϕk(x), truncated to the order n, with
x ∈ D and t ∈ [0, T ].1 The optimality condition
associated to the KLD ensures that, for a given
n, the first n KLD basis functions capture, on
average, more energy than any other orthonor-
mal basis in the linear representation of the field
u (Holmes, 1996). It has been shown that this
property is satisfied (under certain conditions)
by the natural modes, provided that the formu-
lation is embedded in the proper Hilbert space
(Iemma et al, 2006a). In the following, the the-
ory underlying the extension of the KLD to the
modal identification of inhomogeneous structures
is briefly recalled.

We assume that the dynamics of the
undamped-unforced structure is governed by the
equation ρ(x) ü(x, t) + Lu(x, t) = 0, where
ρ = ρ(x) is the structure density. Thus,
the displacement vector is given by u(x, t) =

1Note that, in general, x ∈ En, n = 1, 2, 3 and u(x, t) ∈
Vm, m = 1, 2, 3, being En an n-dimensional (n = 1, 2, 3)
Euclidean point space and Vm an m-dimensional (m =
1, 2, 3) vector space, with n not necessarily equal to m;
consider, for instance, the case of a bending beam (n =
1, m = 2), or of a bending plate (n = 2, m = 1).

∑∞
k=1 αk(t) φk(x), where φk(x) are the natu-

ral modes of vibration (linear normal modes),
solution of Lφk(x) = ρ(x) µk φk(x), with∫
D ρ(x)φi(x) · φj(x) dx = δij . The time de-

pendency of the solution is given by αk(t) =
ak cos (ωkt + χk), where ωk =

√
µk, and ak,

χk ∈ <.
Assuming that the displacement vector (at

a given time) belongs to the Hilbert space
L2

ρ(D), defined by the inner product (f ,g)ρ :=∫
D ρ(x) f(x) ·g(x) dx, the optimal decomposition

of the vector u is given by the solutions of the
integral problem (a complete proof of the follow-
ing equation is given by Iemma et al (2006a) and,
thus, not repeated here)

LE
Rϕ(x) :=

∫
D

ρ(y)R(x,y)ϕ(y) dy = λϕ(x),

(1)
where R(x,y) := 〈u(x, t) ⊗ u(y, t)〉 is the time-
averaged autocorrelation tensor of the displace-
ment vector u(x, t), being 〈. . .〉 :=

∫ T
0 . . .dt the

time-averaging operator and ⊗ the standard ten-
sor product. LE

R is the extended Karhunen-Loève
integral operator and the KLD optimal basis is
given by its eigensolutions. It may be shown that
LE

R is selfadjoint in L2
ρ(D), i.e., ( f ,LE

R g )ρ =
(LE

R f ,g )ρ, and compact (since the kernel of
Equation 1 is bounded). Hence, its eigenvalues
are real and its eigenfunctions form a complete
set of orthogonal functions in the above-defined
Hilbert space (Kress, 1989). Under the hypoth-
esis of undergoing unforced free vibrations and
assuming an observation time T tending to in-
finity, the Karhunen-Loève eigenfunctions coin-
cide with the natural modes of the structure,
i.e., ϕk(x) = φk(x) and, in addition, λk = 1

2 a2
k

(Iemma et al, 2006a). In practical applications,
proper modal identification has to be expected
if the observed vibration is representative of the
motion from a statistical point of view. This is
ensured if all the modes present in the motion un-
dergo a sufficient number of periods during the
acquisition time. Thus, the acquisition time has
to be sufficiently long provided, of course, that
damping is not too high.

When a structure (such as a wing) is embedded
in a uniform flow, the dynamics may be written
as

ρ(x) ü(x, t) + Lu(x, t) = fA(ü, u̇,u,x, t) (2)

In most application of interest in aeronau-
tics, the dependence of the aerodynamic forces
on the elastic displacements (and their time-
derivatives) may be assumed as linear (Iemma



and Gennaretti, 2005). Nevertheless, the result-
ing aeroelastic operator is not self-adjoint and
the aeroelastic modes for the representation of
u are not orthogonal in the L2

ρ(D) space. In this
case, the KLD eigenfunctions (always orthogo-
nal in the embedding Hilbert space) are expected
to be a good approximation of those aeroelas-
tic modes that are “quasi” orthogonal (i.e., for
which

∫
D ρφi · φjdx = εij , i 6= j). In other

words, proper modal identification is expected
in the subspace spanned by “quasi” orthogonal
aeroelastic modes.

3. FREQUENCY, DAMPING AND
AMPLITUDE ESTIMATE

Frequencies, damping and modal amplitudes
are evaluated using the following technique.
First, the coefficients βk(t) (see previous Sec-
tion) are computed as the L2

ρ(D)-projections of
the vector u(x, t) onto the k-th Karhunen-Loève
mode, i.e., βk(t) = (u,ϕk)ρ :=

∫
D u(x, t) ·

ϕ(x)dx. Then the above coefficients are Fourier-
transformed. Under the hypothesis of proper
modal identification (i.e., under the hypothesis
that φk = ϕk) the frequency associated to the
k-th Karhunen-Loève mode is evaluated and as-
sumed as the frequency associated to the corre-
sponding vibrational mode (Iemma et al, 2006b).

The estimation of damping is conducted by ap-
proximating the k-th coefficient βk(t) with the
ideal damped oscillator (solution of β̈ + 2γβ̇ +
kβ = 0, with β(0) = β0 and β̇(0) = β1):

β̂k(t) := âke
−γ̂kt sin(ω̂kt + χ̂k) (3)

(being 2γ̂k the damping associated to the k-th
mode, χ̂k the phase and âk the amplitude) and
finding those parameters âk, γ̂k, ω̂k, χ̂k that solve
the problem

Minimize
âk, γ̂k, ω̂k, χ̂k

∫ T

0
|β̂k(t)− βk(t)|2dt. (4)

4. NUMERICAL RESULTS AND
DISCUSSION

In this section, results obtained on the basis of
numerical experiments are presented. We apply
the modal identification procedure to a wing with
a concentrated mass of 10,000 kg located at the
tip section, embedded in a uniform flow. The
lifting structure has a mass of 5,625 kg. The wing
plant is depicted in Fig. 1. The wing section,
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Figure 1: Wingplant (semi-span).

constant along the span, is a circular biconvex
airfoil with t/c = 0.02. In the following, we first
outline the method used to build the numerical
input; then we solve the KLD problem in both
standard and extended formulation, and compare
the results. Finally, in order to overcome the non-
orthogonality of the aeroelastic modes, we apply
the KLD to a properly filtered signal and perform
the time modeling.

4.1. Building the input

In order to build the numerical input of the KLD
procedure, we solve the problem of Eq. 2 us-
ing a Galerkin expansion of the type u(x, t) ≈∑N

k=1 qk(t)ψk(x). For the ψk we use the natural
modes of vibration of the structure in vacuum
as computed by a finite elements method. The
aerodynamic loads are evaluated via a boundary
element method, BEM (Iemma and Gennaretti,
2005), and coupled with the structural dynam-
ics with a finite state approximation technique
(Iemma and Gennaretti, 2005).

In this work, we use N = 3, and the we assume
a solution of the type

û(x, t) =
3∑

h=1

ch

3∑
k=1

[q̃(h)
k esht + q̃

∗(h)
k es∗ht]ψk(x) (5)

where ∗ denotes the complex conjugate; sh are
the solutions in the Laplace domain and ch are
arbitrary initial conditions. In the following,
we will refer to the sh as the aeroelastic eigen-
values and to the q(h) as the aeroelastic eigen-
vectors. Since the KLD is expected to be in-
dependent on the phase shift of the eigenvec-
tors components,2 the h-th (real) combination∑3

k=1 |q̃
(h)
k |ψk(x) := φh(x) is used as an input

reference function for the h-th aeroelastic mode
2The issue would deserve a careful discussion and will

be addressed in future work.



h sh (s∗h)
1 −0.2857± 10.2523i
2 −0.2418± 7.9514i
3 −0.0215± 0.5685i

Table 1: Aeroelastic eigenvalues

q̃(1) [q̃∗(1)] q̃(2) [q̃∗(2)] q̃(3) [q̃∗(3)]
−0.0003∓ 0.0047i 0.0498∓ 0.0217i 0.9670± 0.2546i

−0.0196∓ 0.0098i −0.3883± 0.4016i 0.0001∓ 0.0006i

−0.7827± 0.6223i −0.7866± 0.3210i 0.0008∓ 0.0023i

Table 2: Aeroelastic eigenvectors

(see Fig. 2), for later comparisons. The three sets
of aeroelastic complex eigenvalues and eigenvec-
tors are shown in Tabs. 1 and 2. Comparing
Eqs. 3 and 5 it is apparent that, under the hy-
pothesis of proper modal identification, must be
−γ̂h = Real(sh) and ω̂h = Imag(sh). The pro-
cedure for finding the values of γ̂h and ω̂h will
be validated in the following on the basis of the
known input values. In real-life applications this
procedure will give the real and imaginary part of
the unknown couple of complex conjugate aeroe-
lastic eigenvalues, associated to the h-th mode
φh.

4.2. KLD procedure

First, we process the field u(x, t) with the stan-
dard KLD. Specifically we use a 9x9 nodes grid
for the spatial resolution and we process 10,000
time samples at 100 Hz. Second, we use the ex-
tension of the KLD to non-uniform structures
for the same analysis. The results are shown in
Figs. 3 and 4. Figure 5 shows a comparison on
a x = c/4 = 0.5m cut of the structure between
the KL modes and the corresponding aeroelas-
tic input modes. It may be noted how the ex-
tended KLD is able to identify the modal shapes
of “quasi” orthogonal input modes (as the aeroe-
lastic mode #1 and #3, see Tab. 2). As men-
tioned, the extended KLD may be used for proper
modal identification in the subspace spanned by
“quasi” orthogonal input modes.

In order to overcome this limitation, we pro-
cess the signal associated to a single input mode
(through a suitable signal filtering). This tech-
nique is closely related to the so-called frequency
domain decomposition and may be used to iden-
tify the whole set of input modes. The results
are shown in Fig 6 where a comparison with the
input modes is made on a x = c/4 = 0.5m cut
of the wing. The agreement is remarkable. The
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Figure 2: Input aeroelastic reference modes.

Real(sh) Imag(sh)
input values −0.241826 7.951417
output values −0.241826 7.951419

Table 3: Identification of aeroel. eigenvalue #2

latter results are used to perform the analysis
of frequency, damping and amplitude associated
to each mode. The projections of the input sig-
nal are compared to an ideal damped oscillator
and the minimization problem of Eq. 4 is solved.
The results are shown in Tab. 3 for KL mode #2
and compared with the input values. Figure 7
depicts a comparison between the projection for
KL mode #2 and the corresponding solution for
the ideal damped oscillator, showing a very good
agreement. Moreover, the amplitude âh (or, in
alternative, the h-th KL eigenvalue) may be as-
sumed as an indicator of the modal activity in
the vibration observed.

5. CONCLUSIONS

An output-only technique for modal identifi-
cation of aeroelastic systems with non-uniform
mass, based on an extended Karhunen-Loève De-
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Figure 3: First three KL modes (standard KLD).

composition has been shown. Proper modal iden-
tification has to be expected for “quasi” orthog-
onal aeroelastic modes. To overcome this limita-
tion, a methodology based on signal filtering has
been used and validated. A procedure for the
identification of the aeroelastic eigenvalues has
been also presented.
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