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ABSTRACT 
Long and slender body with or without flexible 

supports under severe operating condition can be 
unstabilized even by the small cross flow. Turbulent 
flow mixer, which actually increases thermal-
hydraulic performance of the nuclear fuel by 
boosting turbulence, disturbs the flow field around 
the fuel rod and affects dynamic behavior of the 
nuclear fuel rods. Few studies on this problem can 
be found in the literature because these effects 
depend on the specific natures of the support and 
the design of the system. This work shows how the 
dynamics of a multi-span fuel rod can be affected by 
the turbulent flow, which is discretely activated by a 
flow mixer, and the looseness of intermediate 
supports. By solving a state-space form of the 
eigenvalue equation for a multi-span fuel rod 
system, the critical velocity at which a fuel rod 
becomes unstable was established. Based on the 
simulation results, we evaluated how stability of a 
multi-spanned nuclear fuel rod with mixing vanes 
can be affected by the coolant flow in an operating 
reactor core. 

1. INTRODUCTION 
 
The flow velocity in most engineering systems is 

usually far below that of the critical velocity at 
which an oscillating body in an axial flow becomes 
unstable. However a long and slender body, such as 
a fuel rod, with or without supports under a severe 
operating condition can be unstabilized even by a 
small cross flow. From this parallel respect, a 
turbulent flow mixer (called the mixing vane, see 
Figure 2) attached to a downstream of the spacer 
grid disturbs the flow field around a fuel rod and 
affects the dynamic behavior of these nuclear fuel 

rods; it actually increases the thermal-hydraulic 
performances of the nuclear fuel by boosting the 
turbulence. Few studies on this problem can be 
found in the literature because these effects depend 
on the specific natures of the support and the design 
of the system and are difficult to be modeled 
quantitatively. Thus, it is necessary to know how 
this mixing effect due to the flow mixer can change 
the dynamic characteristics of the nuclear fuel rod.  

Mathematical modeling of the hydrodynamic 
force acting on a body due to the flow mixer can be 
derived by generalizing representative design 
features and simplifying the flow downstream of the 
flow mixer while confining assumptions as follow: 
1) a specific design of the flow mixer can be 
characterized by the experimental model test and 
resultant empirical parameters, 2) the flow down 
stream can be assumed as a combination of the swirl 
flow and its dissipation. And we assume the swirl 
flow as the unique, biggest component in the flow 
downstream of the mixer and concentrate on its 
effect as a result of the flow mixer of the 
conventional nuclear fuel rod.  

Nuclear fuel rod is a multi-span, flexible 
cylindrical rod which is supported by spacer grids 
which are spaced along the rod length. Spacer grids 
provide a frictional grip with their spring elements 
so as not to allow a fuel rod to move arbitrary in 
any direction. The stability for a flow-induced 
vibration of a fully supported fuel rod is not a 
concern because its critical velocity is far from the 
operating flow velocity in the reactor core (Kang, 
2003). But, as the residence period inside reactor 
increases, the gripping force can be lost partially or 
entirely due to the thermal and irradiation-induced 
degradation. This looseness of support issues a 
stability problem and a nonlinear dynamics.   

On analyzing the dynamics of a flexible cylinder 
submerged in a flow, Paidoussis (1973, 1976, 1998, 



2004) had accomplished remarkable works in this 
field of a flow-induced vibration. Au-Yang (2001) 
has proposed a semi-empirical methodology 
applicable to the analysis of the behaviors of a fuel 
rod. Because the exciting forces by a coolant flow 
are severe turbulence as well as the functions of the 
environmental parameters in a reactor core, 
theoretical analysis can be confined to a simple 
problem. Based on Paidoussis's works, Chen and 
Wambsganss (1972) studied a beam with more 
general, arbitrary boundary conditions. Based on 
the potential flow theory, Chen (1975) and his 
colleagues (Chung and Chen, 1977; Yeh and Chen, 
1978) also computed the hydrodynamic mass of a 
group of cylinders and a coupled vibration of a fuel 
bundle was discussed.   

 This work shows how the dynamics of a multi-
span fuel rod can be affected by the turbulent flow, 
which is discretely activated by a flow mixer, and 
the looseness of intermediate supports. By solving a 
generalized eigenvalue equation of a multi-span fuel 
rod system, the critical velocity at which the fuel 
rod becomes unstable was established. Based on the 
simulation results, we evaluated how stability of a 
multi-spanned nuclear fuel rod with mixing vanes 
can be affected by the coolant flow in an operating 
reactor core. 
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Figure 1: Multi-spaned, elastically supported 
beam subjected to axial and periodic mixed flows. 

2. BASIC EQUATION AND SWIRL 
MODELING 

2.1 Basic Equation 

By assuming a small lateral motion and uniform 
incompressible flow, the nondimensional linear 
differential equation of motion applicable to a 
vibration analysis of a nuclear fuel rod can be 
founded in Paidoussis (2004), which was derived 
for a flexible beam in a bundle and a confined axial 
flow(see Figure 1). For a simplicity, the viscoelastic 
property of the beam material, gravity, axial tension 
and external pressure are ignored here such that  
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where (') and (․ ) indicate the derivative with 
respective to dimensionless variables of a 

coordinate variable ξ (=x/L) and a time τ 
(=[EI/(m+M)]1/2t/L2), respectively. The various 
symbols in Eq. (1) are: η (=v/L) is a dimensionless 
lateral displacement of the beam, u (=[M/EI]1/2UL) 
is a dimensionless flow velocity , χ 
(=[M/(M+m)]1/2) is a mass ratio of added or virtual 
mass M , ε (=L/D) is a ratio of length to diameter, U 
is a uniform axial flow velocity, EI is a bending 
stiffness of the beam, ai (=2Ci/π) are coefficients 
related to the viscosity in the normal direction to the 
beam length, fsw is a dimensionless hydrodynamic 
force due to the swirl flow downstream of the mixer, 
discussed in the next section. The last term 
represents the elastic supports force ( ik  being a 
dimensionless spring constant) by the discretely 
located spacer grids; δ is the Dirac delta function 
which is activated at a supports location ξi. Inviscid 
and viscous hydrodynamic forces of the third to the 
sixth terms in Eq. (1) were derived with a simple 
mathematical form by a slender body approximation 
(Lighthill, 1960) and Taylor's unconfined flow 
relationship (Taylor, 1952).  

   It is not easy to solve equation (1) analytically. 
So, a discretized model should be introduced to 
compute the eigenvalues approximately. By 
applying a variational formulation, a finite element 
approximation(Vendhan and Bhattachryya, 1997) 
and several mathematical manipulations, the matrix 
form of a state-space equation for the eigenvalue 
problem can be derived as  
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Elements of each matrix of [M], [C] and [K] in 
equation (2) are written as,   
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 The symbols used in Eq. (2) and (3) are as 
follows: D is a state variable defined by v and v , 
[0] and [I] are zero and identity matrix, respectively, 
N is a cubic polynomial shape function as a function 
of the non-dimensional distance in a typical finite 



element, )3~1(=ic are coefficients related to the mass, 
the damping from coriolis and viscous 
forces),  )6~4(=ic  are coefficients related to a 
stiffness from a centrifugal, two viscous 
hydrodynamic forces, ik  is a dimensionless spring 
constants of the discrete grids supports, swk  is a 
dimensionless stiffness of the elastic foundation due 
to the swirl effects. The symbol (*) indicates 
elemental integration over affected region by the 
flow mixer; x < 40Dh, where x is a distance from the 
mixer and Dh is the hydraulic diameter.  

   Dynamic stability of the flexible beam 
according to the flow velocity is determined by the 
sign of the real part of the eigenvalue; However, 
only the first loss of a stability can be predicted 
from a linear equation. If the real part of an 
eigenvalue is negative, the beam is stable (in linear 
manner). Otherwise, the beam is unstable; if an 
imaginary part of the eigenvalue is a non-zero, a 
divergence, static instability or buckling through 
loss of the restoring system stiffness, will happen in 
the rod, if an imaginary part of the eigenvalue is 
zero, a flutter will appear. 

 

    

 

Figure 2:  Mixing vane,  flow distribution in a 
subchannel  downstream of the mixing vane.  

 

2.2 Swirl modeling 

Mixing vane or flow mixer attached to the 
downstream of a spacer grid generates a strong 
turbulence in a subchannel and promotes a flow 
mixing among subchannels. Various types of 
mixing vanes have been developed to produce 
swirling flows in subchannels as well as a crossflow 
between subchannels. The shapes of the mixing 
vane have been improved to strengthen turbulence 
and a cross flow mixing (Chang, 2006; Yang et al, 
1998; Rehme, 1987). Figure 2 shows a typical flow 
velocity distribution in a subchannel downstream of 
a vane with a specific bent angle. The swirl flow 
exponentially decays as the distance from the vane 
increases.  

 

Based on the assumption of a incompressible, 
laminar flow and a plane vibration, Langthjem and 
Nakamura(2006) showed that the swirl flow 
generated in an annular flow in a narrow passage in-
between acts as an elastic foundation (continuously 
and distributed spring supports) with a negative 
stiffness; Its magnitude is proportional to square of 
the mean circumferential flow rate. By using a 
dimensionless stiffness coefficient ( swk ), a swirling 
flow ( swq ) and some mathematical manipulations, 
the mathematical form of a hydrodynamic force due 
to a swirl flow can be written as  

2( , , )sw sw h swf k D h qη θ ρ η= =  (4) 

where coefficient θ is a function of the fluid density, 
the rod diameter and the inter-gap distance between 
neighboring rods. Their functional relationship can 
be found in Langthjem (1999, 2006). However the 
flow through the fuel elements is turbulent, the 
induced swirling flow boosts a three-dimensional 
motion of a rod. These turbulence and three-
dimensional vibrations will complicate an analysis 
considerably. To obtain simple, analytical results, 
the present study uses the assumptions of a laminar 
flow and plane vibrations.    

 The swirling flow in equation (4) can be defined 
by the swirl mixing factor (SM) which is the ratio 
between the inlet uniform axial flow and the 
swirling flow integrated along the centerline of a 
subchannel (In, 2000; Kim, 1996). Swirl mixing 
factor decays exponentially to nearly zero as the 
distance x increases from the vane; SM = S0

dxe /β− , 
where β  is a swirling decay rate, d is the hydraulic 
diameter. Swirl flow can be uniquely defined by the 
S0 andβ. Swirl mixing factor (SM) is defined as: 
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where U is a uniform axial flow velocity, Vlat is a 
lateral flow velocity and R is a radius of the circular 
section or a hydraulic radius of the subchannel test 
section. Decay rate of SM depends primarily on the 
angle of the vane root and the shape of the outer 
confinement channel. 

3. SIMULATION AND RESULTS 
 
 To investigate the effect of 1) the swirl flow 

generated discretely by the flow mixer and 2) 
severely supported boundary condition due to the 
support looseness on the dynamic stability of the 
fuel rod, free vibration analysis for the fully 
supported fuel rod was performed. The two cases of 
swirl-mixing parameter were considered from the 
experimental model test as discussed in (In, 2000). 



One has a higher decay rate and a little lower initial 
swirl-mixing factor (S0) than those of the other as 
shown in Figure 3. For the typical vane angle (30°), 
the decay rates for two swirl models are 0.03 and 
0.06, respectively. The higher decay rate is due to 
not only the decrease of the lateral flow distribution 
by the surrounding rods but also the cross flow 
among the neighboring subchannels.  
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Figure 3: Two swirl flow models characterized by 

β and S0 (Vane angle 30°). 
 
   Owing to a relaxation by thermal and neutron 

irradiation effect in a reactor core, the spring force 
of supporting the fuel rod can be lost even at the 
early stage of a fuel life. It results in an intermediate 
gap at the supporting locations along fuel rod length. 
The possibility of a support looseness due to an in-
core thermal and neutron irradiation is much lower 
at the bottom or top grid than that at the middle 
grids because of the power distribution along the 
fuel rod length and the material resistance of the 
bottom grid to an irradiation (Kim, 2004; Park, 
2007). So, two cases of a supporting condition are 
considered: one has a spring support at both ends 
(like a simply supported beam) and the other has 
one spring support at the bottom grid (like a 
cantilever beam). These two extreme supporting 
conditions are based on the fact that a different 
material for the top/bottom grids is used to reduce 
spring force degradation.  

 

3.1 The swirl effect on the stability of fully 
supported rod 

Figure 4 shows the Argand diagram for the 
eigenvalue for the fully supported rod according to 
an increase of the dimensionless flow velocity up to 
28.7(120 m/s). It shows the effect of a swirl flow on 
the stability (critical velocity) of a fully supported 
fuel rod. The boundary condition of a fuel rod is 
actually free-free. But series of elastic support make 
the system nearly conservative. So, divergence 
instability occurred in the case 1 and case 2. It is 
interesting that flutter type instability can occur in 

nearly conservative system due to the intermediate 
swirl effect as case 3. This may be caused by the 
loss of balance between a restoring elastic support 
force and a devastating hydrodynamic force due to 
the flow mixer. The leaned circle in the dotted line 
in Figure 4 before the instability is probably 
resulted from the mode crossing or exchange. 
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Figure 4: Argand diagram of the first eigenvalue 
for the fully supported fuel rod; 1) the swirl effect is 
neglected, 2) S0=0.042, β=0.06 (result from the 
subchannel test) and 3) S0=0.05, β=0.03 (result 
from circular channel test). 

 
By comparing the critical velocity for the cases 

of 1), 2) and 3), the consideration of the swirl flow 
clearly reduces the critical flow velocity of the 
system by 19.14 (80.01 m/s) (about 33 % 
reduction); but, it is still far from the operating flow 
velocity. So, there is no possibility of instability in 
the case of the fully supported rod under the core 
flow condition (Park, 2007). As the flow velocity 
rises, the imaginary part (natural frequencies of the 
rod) of eigenvalues decreases gradually and the rate 
of the frequency decrease becomes higher, then 
drops in a high flow region eventually. This means 
that the reduction of the system stiffness according 
to the flow increase has a different rate for the range 
of the flow. The real part (system damping) of the 
eigenvalue linearly increases according to the flow 
velocity until a sudden change appears at around the 
onset of the instability. 

 

3.2 Extreme support condition due to an 
intermediate support looseness 

Figure 5 illustrates the imaginary and the real 
part of the lowest three eigenvalues of the 
elastically supported fuel rod at both ends according 
to the nondimensional flow velocity. This indicates 
the characteristics of the natural frequency and a 
damping of the fuel rod according to the two swirl 
mixing parameters and the flow velocity. As the 
flow velocity increases, the frequency of the fuel 



rod decreases gradually to zero. Then, both 
frequency and damping of the rod are changed 
suddenly while a mode crossing or exchange occurs 
at a certain flow velocity. The critical velocities for 
the two swirl mixing parameters are 3.17 (13.24 
m/s) and 2.42 (10.1 m/s), respectively. Those are 
considerably reduced from the 5.64 (23.57 m/s) of 
the swirl effect not being considered. 
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Figure 5: Imaginary and real value of the lowest 
three eigenvalues for the both ends spring 
supported rod; (a), (b): S0=0.042,β=0.06 from the 
subchannel test, (c), (d):S0=0.05,β=0.03 from the 
circular channel test. 

 
 Fig. 6 indicates the results of the other case 

(nearly cantilever type boundary condition) of the 
extreme supporting condition. It also shows the 
lowest three eigenvalues of the fuel rod according to 
the two swirl mixing parameters and the flow 
velocity. The natural frequency and damping, with 
the flow velocity, change in a similar manner to the 
other extreme support case, but the critical velocity 
is considerably lower than that of the previous 
boundary condition. The critical velocities for the 
two swirl mixing parameters are 1.23 (5.14 m/s) and 
0.84 (3.51 m/s), respectively. Those are 
considerably reduced compared to 4.07 (17.03 m/s) 
of the swirl effect not being considered.  
 

0 1 2 3 4

0

1

2

3

4 [S0=0.042, β =0.06]

Im
(λ

* )

 

 

u

 1st

 2nd

 3rd

0 1 2 3 4
-6

-4

-2

0

2
ucr= 1.23(5.14m/s)

[S
0
=0.042, β =0.06]

 

 

R
e(
λ* )

u

 1st

 2nd

 3rd

 
(a)                                 (b) 

0 1 2 3 4
-1

0

1

2

3

4

5

6

7 [S0=0.05, β =0.03]

Im
(λ

* )

 

 

u

 1st

 2nd

 3rd

0 1 2 3 4
-8

-6

-4

-2

0

2

4

6

Ucr=0.84(3.51m/s)

[S0=0.05, β =0.03]

 

 

R
e(
λ* )

u

 1st

 2nd

 3rd

 
(c) (d) 

Figure 6: Imaginary and real value of the lowest 
three eigenvalues for the bottom-end supported 
rod;(a), (b): S0=0.042, β=0.06 from the subchannel 
test, (c), (d):S0=0.05,β=0.03 from the circular 
channel test. 

4. CONCLUSION AND SUMMARY 
 
In this study, the effect of a swirl flow generated 

by a flow mixer on the dynamics of a fuel rod was 
investigated through a free vibration analysis of a 
fully supported fuel rod. By modeling the swirl flow 
as an elastic foundation with a negative stiffness, 
the stability of a severely supported fuel rod with 
support looseness was also evaluated. Findings 
from the analysis are summarized as: 

1) The critical velocity of the fully supported fuel 
rod is 20.3 ~ 33 % lower (80.01 m/s) than that of 
the case when ignoring the swirl effect. But the 
critical velocity is still far from the operating flow 
velocity 0.96 ~ 1.44 (4~6 m/s); There is no 
possibility of instability in the case of the fully 
supported rod under the core flow condition. 

2) Series and intermediate swirl effect can alter 
type of instability, i.e. divergence or flutter, for the 
nearly conservative system of elastically supported 
ends. 

3) Because the swirl flow generated by the flow 
mixer lowers the critical velocity of the axial flow, 
it is necessary to consider in a dynamic analysis of a 
fuel rod to compensate for underestimates of the 
critical velocity.  

4) For the two severely supported fuel rods, the 
critical velocity becomes close to, even lower than 
the operating flow velocity. It is more necessary to 
consider the effect of a flow mixer in the case of a 
severely supported fuel rod due to support looseness. 
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