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ABSTRACT 

We study the dynamics of spheres rising or 
falling freely through a fluid at, Re = 450 and 
10,000.  Although this problem has been the focus 
of a number of investigations since it was first 
considered by Newton (1726), the conditions under 
which a sphere will vibrate are still not understood 
clearly.  Several studies conclude that the dynamics 
are determined by the mass ratio (or relative 
density) m*, but while some investigators find that 
all rising spheres (m* < 1) vibrate and all falling 
spheres (m* > 1) descend rectilinearly, others have 
observed oscillation for both rising and falling 
cases.  For vibrating spheres, it is also unclear 
what types of trajectories may occur. Both in-plane 
oscillations and helical motion have been 
interpreted from experimental results.   

At both values of Re studied, we find that falling 
spheres descend rectilinearly.  In the case of the 
rising sphere, we find that there exists a critical 
value of the mass ratio, below which the sphere 
undergoes large-amplitude oscillations.  Despite the 
difference in the modes of vortex formation at these 
two Reynolds numbers, associated in part with the 
instability of the separated shear layer at higher Re, 
a critical mass exists for both cases.  For the higher 
Reynolds number, we find a critical mass of m*crit = 
0.61, in good agreement with the result for tethered 
and elastically mounted spheres at similar Re 
(Govardhan & Williamson, 2005).  At Re = 450, 
performing experiments in glycerin-water mixtures 
to control the Reynolds number, we find a distinctly 
lower critical mass, m*crit = 0.36.   

For both Reynolds numbers, the motion of the 
vibrating spheres occurs in a single vertical plane, 
with no helical trajectories observed.  Visualizing 
the wake of a vibrating sphere at this Reynolds 
number reveals another interesting phenomenon; 
rather than two alternately signed vortex loops 
being shed in a cycle, as might be expected based 
on studies of the flow past fixed spheres, four vortex 
rings are formed in each cycle of oscillation. 

1. INTRODUCTION 
Whether a sphere vibrates as it rises or falls 

through a fluid is of interest in a wide range of 
practical applications from sedimentation to 
atmospheric measurements using weather balloons. 
Vibration is known to affect drag as well as heat 
and mass transfer.  The earliest observation of 
vibration of a freely rising or falling sphere is 
reported by Newton (1726), who writes in the 
Principia that inflated hog bladders “did not always 
fall straight down, but sometimes flew about and 
oscillated to and fro while falling.  And the times of 
falling were prolonged and increased by these 
motions.”  Such classical observations correspond 
quite reasonably with recent measurements. 

More recently, investigations of freely rising or 
falling spheres have concluded that the mass ratio of 
the sphere determines when vibration occurs, with 
lighter spheres oscillating and heavier ones moving 
rectilinearly.   

The experiments of Preukschat at Re = 1000 – 
10,000, and direct numerical simulation by Jenny, 
Bouchet & Dusek (2004) at Re = 200 – 500 found 
that falling spheres (m* > 1) have a rectilinear 
trajectory, while rising spheres (m* < 1) vibrate, 
suggesting that there may be some special 
significance to m* = 1, such that there is a clear 
distinction between rising and falling.  On the other 
hand, MacCready & Jex (1964), Reid (1964) and 
Veldhuis, Biesheuvel, van Wijngaarden & Lohse 
(2004) observed both rising and falling spheres 
undergoing large lateral motions, while a number of 
studies considering only falling spheres have found 
vibration.  With such major differences between the 
results of these studies, a key question remains: 
when does a rising or falling sphere vibrate? 

 
 
 
 
 
 



2. EXPERIMENTAL METHODS 
Our experiments on freely rising and falling 

spheres were performed in two vertical tanks, a 
larger one with dimensions 0.4m x 0.4m x 1.5m, 
and a smaller one measuring 0.2m x 0.2m x 0.9m.  
Both solid and hollow spheres were used, with 
diameters, D, ranging from 0.2cm to 3.8cm, 
deviating from perfect sphericity by no more than 
1.5%.   

The spheres were held in the tank using a hook 
inside a hollow launching tube, and were released 
after the fluid settled.  Two ranges of Reynolds 
number were studied, Re ~ 10,000 in the larger 
tank, and Re = 450 in the smaller tank, where a 
constant Reynolds number was achieved using 
mixtures of glycerin and water to control the 
viscosity.   

To allow flow visualization, sodium fluorescein 
dye was introduced into the wake of the sphere and 
illuminated with an argon ion laser. 

3. CRITICAL MASS RATIO FOR 
FREELY RISING SPHERES 

We begin with experiments using spheres with 
Re ~ 10,000.  A falling sphere with m* = 2.84 
descends with only small non-periodic transverse 
motion in figure 1(a).  In the case of a buoyant 
sphere with m* = 0.75, for which previous studies 
predict vibration will occur, we find unexpected 
dynamics: after undergoing an initial transient that 
is quickly damped out, the sphere rises rectilinearly.  
This result, shown in figure 1(b), indicates that 
contrary to previous observations, some rising 
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Figure 1:  Trajectories of rising spheres viewed from above (upper row) and from the side (lower 
row).  (a)  m* = 2.84.  The sphere falls with very small, nonperiodic transverse motion. (b)  m* = 
0.75.  After a brief transient, the sphere rises rectilinearly.  (c)  m* = 0.27.  Very light spheres vibrate 
in a single plane.  Re ~ 10,000. 
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Figure 2:  The critical mass for a rising and falling sphere at Re ~ 10,000 occurs at m*crit = 0.61, 
indicating that some rising spheres do not vibrate.  Time histories of y* = y(t)/D are shown for 
selected m*.  , the sphere quickly reaches a steady state; ▲, transient cases, such as the trajectory 
shown in figure 1(b). 

Figure 3:  At Re = 450, the critical mass for a rising and falling sphere is m*crit = 0.36, distinctly 
lower than the higher Reynolds number case, but leaving a wide regime of buoyant mass ratios
where vibration exists.  , steady state; ▲, transient. 

Re = 450 



Figure 4: (a) A single-sided chain of vortex loops in the wake of a falling sphere in rectilinear
motion, m* = 1.41. (b) In the wake of a very light rising sphere, m* = 0.08, four distinct vortex
structures are created in each cycle of oscillation, twice as many as have previously been observed in
flows past static or elastically mounted spheres.  Re = 450. 

spheres do not vibrate.  As a result of conducting an 
extensive set of such experiments, it appears there is 
nothing inherently special about m* = 1.  With a 
sufficient reduction of the mass ratio, however, 
buoyant spheres begin to undergo large-amplitude 
oscillations, as shown in figure 1(c) for m* = 0.27.  
Although it is not evident from the figure, if the 
mean rising velocity is subtracted, there also exists 
streamwise vibration with an amplitude AX* = 0.14.  
The top view of the trajectory shows that although 
the sphere is free to move in three-dimensions, the 
oscillation is confined to a single plane, the 
orientation of which is determined by the direction 
of the initial velocity. 

Measuring the oscillation amplitude of spheres at 
many different mass ratios, plotted in figure 2, we 
find a critical value of the mass ratio below which a 
sphere will vibrate, m*crit = 0.61.  Consequently, 
there is a broad range of mass ratios over which 
buoyant spheres will rise without vibration.  We 

attribute this difference with previous studies to the 
sensitivity of the sphere dynamics to experimental 
conditions.  In particular, spheres heavier than the 
critical mass were very sensitive to small 
disturbances in the fluid that could induce transient 
motions.  To minimize these disturbances and 
ensure that the fluid was truly quiescent, a settling 
time of at least two hours between experiments was 
required.  It is also noteworthy that the value of the 
critical mass found for rising spheres agrees well 
with the estimate of the critical mass made by 
Govardhan & Williamson (2005) for elastically 
mounted and tethered spheres, where they find 
m*crit ≈ 0.6. 

A similar set of experiments was performed for 
spheres at Re = 450.   At this Reynolds number, we 
find an even wider range of mass ratios where rising 
spheres do not vibrate, corresponding to a critical 
mass m*crit = 0.36, shown in figure 3.  Like the 
higher Reynolds number case, vibrating spheres 
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Figure 5:  Detailed view of the wake of a vibrating sphere.  (a) A half-cycle of oscillation results in 
the creation of a stronger, primary structure (upper left) and a weaker, secondary structure (lower 
right).  In between these structures, the trailing vortex pair crosses over (lower left).  Wake viewed
normal to the plane of oscillation.  (b) Simultaneous view of the wake viewed parallel to the plane of
oscillation. 

would undergo periodic, large amplitude oscillation 
in a single plane, and spheres slightly heavier than 
the critical mass showed transient small-amplitude 
behavior.  The heavier spheres moved rectilinearly, 
but rather than being vertical, their trajectories were 
slightly oblique.  Although the Reynolds number of 
the sphere is similar to that of spiraling bubbles, no 
evidence of spiral trajectories was found. 

4. VORTEX DYNAMICS IN THE WAKE 
OF FREELY RISING AND FALLING 

SPHERES 
Several studies have examined the wakes of fixed 

spheres, however much less is known about the 
vortex dynamics behind unrestrained spheres, where 
the vortex dynamics can interact with the body 
motion.  Using laser-induced fluorescence, we find 
that in the case of rectilinear trajectories, the sphere 
sheds a single-sided chain of vortex loops (figure 
4a), resembling the wake of a fixed sphere observed 
by Sakamoto & Haniu (1990) at similar Reynolds 

numbers.  Since the wake is single-sided, there is a 
mean transverse force that causes the trajectory to 
deviate from the vertical.  From the angle of the 
trajectory, this force is found to be CY = 0.04.  Such 
an asymmetric wake pattern would not be expected 
from the oscillating sphere, whose trajectory is 
periodic.  One might expect to have a double-sided 
chain instead, as has been found for vibrating 
tethered spheres by Govardhan & Williamson 
(2005).  However, the actual pattern, shown in 
figure 4(b) is unlike any wake mode found 
previously for either fixed or vibrating spheres, in 
which there are four distinct vortex structures 
formed in each cycle of oscillation.  

Due to the small size (D ≈ 0.2 cm) and high 
velocities (U ≈ 20 cm/s)of the freely rising spheres, 
it is difficult to precisely identify these structures 
and see how they are formed.  To provide a better 
understanding of these phenomena, we performed 
further experiments in a computer-controlled 
towing tank, in which trajectories measured from 
the freely rising spheres were matched in a towing 
tank.  This allowed for the use of much larger 
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spheres (D ≈ 3.81 cm) that could be towed at a 
lower velocity (U ≈ 1 cm/s), while maintaining the 
same Reynolds number.  With these experiments, 
we were able to achieve superior spatial and 
temporal resolution for the visualizations. 

Images obtained from these towing tank 
experiments are shown in figure 5.  In each half 
cycle, a large primary structure is shed.  This 
structure appears to develop into a vortex ring (the 
upper structure in figure 5 a,b), while the counter-
rotating vortex pair subsequently develops into a 
second, weaker structure (figure 5 a,b, lower).  
Immediately preceding the formation of this 
secondary structure, the two counter-rotating 
streamwise vortices in the pair are found to cross 
over one another, providing a mechanism for the 
change in sign of the streamwise vortex pair as the 
body moves from one half cycle to the next.  
Evidence for the vortical structure is provided by 
extensive PIV measurements, which will be 
presented at the conference. 

5. CONCLUSIONS 
While several previous studies have found that 

the boundary between the vibrating and rectilinear 
regimes for freely rising and falling spheres occurs 
at m* = 1, our experiments indicate that this mass 
ratio has no special significance.  Instead, we find 
values of the critical mass, m*crit = 0.38 at Re = 450 
and m*crit = 0.61 at Re = 10,000.  Consequently, 
there exists a wide range of mass ratios where rising 
spheres can ascend without vibration.  Since the 
spheres were observed to be very sensitive to small 
disturbances in the surrounding fluid, these results 
are highly dependent on careful control over the 
experimental conditions: the presence of significant 
background disturbances in a facility would lead to 
vibration where it should otherwise not occur, and 
hence to incorrect deductions. 

We performed studies on the wake of freely 
rising and falling spheres at Re = 450, and 
discovered a new mode of vortex formation, in 
which a vibrating sphere sheds four vortex 
structures per cycle of oscillation, twice as many as 
have been observed in the wakes of tethered and 
fixed spheres.  Experiments in a towing tank, in 
which rising sphere trajectories are precisely 
replicated, show that this wake comprises a primary 
structure, which originates as a vortex loop shed 
from the sphere, and subsequently develops into 
what appears to be a vortex ring, and also a 
secondary structure, which evolves from the trailing 
streamwise vortex pair.  Further detailed PIV 
measurements will show the precise vorticity within 
the primary and secondary structures over a range 
of Reynolds numbers. 
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