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ABSTRACT 
In this study we have made extensive 

measurements of the fluid forces on a cylinder that 
is controlled to oscillate transverse to a free stream 
at Re = 4000. These measurements were used to 
create extremely high resolution contour plots of 
the magnitude of the fluid force, and contour plots 
of the phase angle between the forces and body 
motion, in the plane of normalized amplitude and 
frequency. We find transitions in certain regions of 
this plane where the character of the fluid forces 
changes between distinct modes. Interestingly, these 
transitions correspond well with boundaries 
separating different vortex shedding modes in the 
Williamson-Roshko (1988) map of regimes. A 
further new characteristic, which is only observable 
with very high-resolution data, is the existence of 
regimes where two modes overlap. By examining 
the energy transfer from fluid motion to cylinder 
motion we are able to predict the response of an 
elastically mounted cylinder that agrees well with 
the measured free vibration response of Govardhan 
& Williamson (2006) at both high and low mass-
damping. Furthermore, by looking at the shape of 
the excitation contours and the transitions between 
different modes, we are able to predict clearly the 
different types of transition between free vibration 
response branches; namely the hysteretic mode 
transition and the intermittent switching mode 
transition. A key approach that we shall introduce 
in this work involves the use of an “energy 
portrait”, exhibiting stable and unstable amplitude 
response solutions, dependant on the gradient of 
energy transfer with amplitude (the sign of 
dE*/dA*).  

1. INTRODUCTION 
The problem of vortex-induced vibration is of 

interest to many fields of engineering. It affects, for 
example, the dynamics of riser tubes bringing oil 
from the seabed to the surface, the flow around heat 
exchanger tubes, and the design of civil engineering 
structures such as bridges and chimneys. An 
overview of recent phenomena in vortex-induced 
vibration can be found in the review by Williamson 
& Govardhan (2004). 

The case of an elastically mounted rigid cylinder 
that is confined to more transversely to the flow is 
often used as a paradigm for understanding the 
problem of vortex-induced vibration in general. In 
many studies, investigators have employed 
controlled vibration (where a cylinder is moved 
with a prescribed motion) and related force 
measurements to the case of a freely vibrating 
cylinder. For example, Mercier (1973), Sarpkaya 
(1977), Staubli (1983) and Carberry et al. (2001, 
2005) measured the forces on a cylinder that is 
controlled to oscillate sinusoidally transverse to a 
flow. Carberry et al. also used digital particle image 
velocimetry (DPIV) to examine the wake vortex 
dynamics. Gopalkrishnan (1993) and Hover, Techet 
& Triantafyllou (1998) made force measurements 
over a wide range of oscillation amplitudes and 
frequency, generating contour plots of the fluid 
forcing. 

In the present study, we have conducted 
controlled vibration experiments over an expansive 
range of amplitude and frequency with much higher 
resolution than in any previous data set. Our hope is 
that with this extremely high resolution data, we 
may uncover key features that have not previously 
been observed, and thus obtain a more profound 
understanding of vortex-induced vibration. 

Force measurements from controlled vibration 
experiments can be related to the free vibration case 
through the equation of motion. For an elastically 
mounted cylinder, constrained to move transverse to 
a flow, the motion (y) can be defined by the 
following equation: 
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When the body motion is synchronized with the 
vortex shedding, the cylinder motion, y(t) and fluid 
forcing, F(t) are typically well approximated by 
sinusoidal functions (in controlled vibration, the 
motion is prescribed to be sinusoidal): 
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For such a system, the energy transferred from the 
fluid to the cylinder is one cycle is given by: 



φπ sin0AFEIN =   (4) 

Where φ is the important phase angle between 
body motion and fluid force. The energy lost to 
structural damping (c) is given by: 

234 cAfEOUT π=  (5) 

If the system is oscillating with a constant 
amplitude and frequency, the energy into the system 
must exactly balance the energy out of the system, 
over one cycle. Combining equations (4) and (5) 
and nondimensionalizing yields: 
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(In this study A* = A/D = amplitude/diameter, 
U* = U/fND, f* = f/fN, where U is the free stream 
velocity, f is the oscillation frequency, and fN is the 
natural frequency, and m* = oscillating mass / mass 
of fluid displaced.) We can use equation (6) for the 
energy balance along with contours of the fluid 
excitation ( φsinYC ) from controlled vibration to 
predict a free vibration response for any particular 
mass damping. By looking at the energy transfer in 
more detail, we can understand many of the 
phenomena that occur in free vibration, some of 
which we illustrate in this paper. 

2. EXPERIMENTAL METHODS 
The present experiments are conducted in the 

Cornell-ONR Water Channel, which has a cross-
section of 38.1 cm x 50.8 cm. The turbulence level 
in the test section of the water channel is less than 
0.9%. A cylinder of diameter 3.81 cm and length 
38.1 cm is suspended vertically in the water channel 
and forced to oscillate transverse to the flow using a 
computer-controlled motor attached to a transverse 
lead screw. The flow speed (corrected for blockage) 
is 10.5 cm/s giving Re = 4,000. A fixed end plate is 
placed 2 mm below the bottom of the cylinder (but 
not in contact with the cylinder) to encourage two-
dimensional vortex shedding, following the study of 
Khalak & Williamson (1996). 

A total of 5680 runs are conducted over a range 
of normalized amplitude and frequency, for 
approximately 500 hours worth of data. Such an 
expansive data set is only possible because the 
experiment is conducted in a continuously flowing 
water channel facility and thus can be automated 
and run unattended for wide sets of data. 

A two-axis force balance utilizing LVDTs (linear 
variable distance transducers) is used to measure the 
lift and drag forces on the cylinder. The transverse 
displacement of the cylinder is measured using a 

non-contact (magnetostrictive) position transducer. 
The inertial forces in the transverse direction are 
subtracted from the total measured force. 

For each run, the fluid force magnitude and phase 
angle (relative to the body motion) at the body 
oscillation frequency is calculated using a Fourier 
analysis.  

3. CONTOURS OF FLUID EXCITATION 
AND VORTEX SHEDDING MODES 

 
From this large amount of controlled vibration 

data, we can plot high resolution contours of several 
quantities: CY, CD, φ, φsinYC , etc. Here we choose 
to focus on the fluid force in phase with the cylinder 
velocity, φsinYC , which represents the normalized 
fluid excitation.  

Upon examining our controlled vibration data, 
we notice that the fluid forcing shows qualitative 
jumps in certain regions as amplitude or frequency 
is varied. We notice (in Figure 1) that the 
boundaries separating these different fluid forcing 
regimes are remarkably similar to boundaries 
separating different vortex wake modes in the 
Williamson & Roshko (1988) map of vortex 
shedding regimes. Thus we expect that the jumps in 
fluid forcing found here would correspond to 
changes in the wake vortex dynamics found in the 
latter work. 

Using PIV measurements we have confirmed that 
the vortex shedding modes we expect to see, based 
on the Williamson-Roshko map, are indeed the 
shedding modes that exist for our oscillating 
cylinder. We show in Figure 2 two examples of 
such vortex wake modes: the “2S” mode and “2P” 
mode.  

There are also some regions where even for a 
cylinder oscillating at a constant amplitude and 
frequency (i.e. at a particular point in the plot of 
Figure 1), the fluid forcing switches between two 
distinct modes. These two modes were analyzed 
separately and are shown as overlapping contours in 
Figure 1. This is particularly evident for the region 
between U*/f* ≈ 4.4 – 6.2. Interestingly, the peak 
amplitude for a free vibration response exists inside 
this overlapping region, so our understanding of this 
region is essential to an understanding of the 
dynamics of the cylinder at its maximum (i.e. worst 
case) vibration. 
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Figure 1. Extremely high resolution  contours of fluid excitation ( φsinYC ) in normalized amplitude- 
frequency plane. Boundaries between regimes of distinct fluid forcing (– – –) are remarkably similar to 
boundaries in the Williamson & Roshko (1988) map of wake modes. In regions where contours overlap, two 
modes can alternately exist for a given value of normalized amplitude and frequency. 
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Figure 2. Vorticity contour plots from PIV measurements, illustrating the 2S and 2P vortex shedding modes. 
The 2S mode (a) was found at A* = 0.3, U*/f* = 5.4. The 2P mode (b) was found at A* = 0.6, U*/f* = 6.4. 
The darker gray indicates clockwise vorticity, the lighter gray indicates counterclockwise vorticity. Contour 
levels shown are wD/U = ±0.4, ±0.8, ±1.2, … 



4. PREDICTING “FREE VIBRATION” 
RESPONSE 

From the contour plot of the fluid excitation in 
Fig. 1, we can use equation (6) to predict the 
response for an elastically mounted cylinder and 
compare it to a measured free vibration response at 
the same mass-damping from Govardhan & 
Williamson (2006) as shown in Figure 3. There is a 
good agreement between the two cases, especially 
in the lower branch. The Reynolds numbers for the 
two cases are matched to be around 4000 for the 
peak amplitude. This is important, as the amplitude 
in the upper branch depends strongly on Re as 
explained in Govardhan & Williamson (2006). 
Similar agreement between the measured and 
predicted response is also found for higher values of 
mass-damping. 

4.1 Hysteretic mode transition: energy portrait at 
U* = 5.4 

For a free vibration response at low mass 
damping (such as the one shown in Figure 3) there 
are three branches: an initial, upper, and lower 
branch, with a hysteretic mode transition between 
the initial and upper branch, and an intermittent 
switching mode transition between the upper and 
lower branch (as shown by Khalak & Williamson, 
1999). We can use the fluid excitation contours to 
help understand the origin of these transitions. For 

example, for a cut of constant normalized velocity 
that intersects the initial and upper branch (U* = 
5.4), the fluid excitation follows an ‘S’ like shape as 
amplitude is increased (see Figure 4). The energy 
lost due to damping follows a straight line with a 
slope proportional to the value of mass-damping. 
The free vibration response should lie at the 
intersections of these two curves where there is a 
balance of energy. In Figure 4, for a mass-damping 
of 0.05 there are three intersections, however only 
two of them are stable, having a negative gradient 
of energy transfer with amplitude (dE*/dA* < 0). 
(We define E* as the normalized energy transferred 
into the system over one cycle of oscillation.) These 
stable equilibria correspond to the initial branch and 
the upper branch of free vibration. The middle 
intersection is unstable (dE*/dA* > 0). If the system 
were to be perturbed from this equilibrium at ‘U’, 
say the amplitude is increased slightly, the energy 
into the system would be greater than the energy out 
of the system and the amplitude would continue to 
increase until the system approaches the stable 
solution at ‘S’. In essence, stability and instability 
in the energy portrait is given by: 

 
Stable response solution: dE*/dA* < 0 
Unstable response solution: dE*/dA* > 0 
 

Steady free vibration would not be found at the 
unstable equilbria, so they would not appear in a 

Figure 3. Close agreement is found between a measured free vibration response and predictions using high
resolution controlled vibration force data; m* = 10.47, (m*+CA)ζ = 0. ● measured response from 
Govardhan & Williamson (2006) ○ predicted response from controlled vibration data (present results).  For
the predicted response, Re = 4000 throughout the plot. For the measured free vibration response, the peak
amplitude corresponds to Re ≈ 4000. 



 

Figure 4. “Energy portrait” for the hysteretic mode transition (U* = 5.4 cut). ● fluid excitation from 
contours in Figure 1,  equilibrium points, S = stable equilibrium, U = unstable equilibrium. Arrows 
indicate direction of movement for non-equilibrium states. 

 
 

 
Figure 5. “Energy portrait” for the intermittent switching mode transition (U* = 6.0 cut). ●,○ fluid 
excitation from the overlapping  contours in Figure 1 (corresponding to the lower branch and the upper 
branch respectively). We suggest that an intermittent vortex mode change causes a jump from one fluid 
excitation curve to the other.  equilibrium points,  arrows indicate direction of movement for non-
equilibrium states. 

 



response plot. The movement and disappearance of 
these stable and unstable equilibria, as normalized 
velocity is varied, is what leads to the hysteresis 
between the initial and upper branches that is seen 
in the response of elastically mounted cylinders. 

 

4.2 Intermittent switching mode transition: 
energy portrait at U* = 6.0 

We can also look at the fluid excitation along 
cuts of constant normalized velocity where the 
upper and lower branches are intersected, U* = 6.0, 
passing through a large region where the fluid 
excitation contours overlap. In Figure 5, we see that 
there are amplitudes where two possible values exist 
for the fluid excitation. We find two stable 
equilbria, because for both cases where the energy 
of excitation is balanced by the energy dissipated by 
damping (in this example (m*+CA)ζ = 0.05) we 
note that dE*/dA* < 0. It seems plausible, based on 
previous free vibration results (i.e. Khalak & 
Williamson, 1999), to suggest that the vortex 
shedding may change intermittently between the 
two modes in the overlap region (see the contours in 
Figure 1). When this occurs, the system will jump 
from one fluid excitation curve to another, as 
illustrated by the paths followed in the “energy 
portrait” of Figure 5, leading to a distinct change in 
response amplitude. This scenario represents an 
intermittent switching of response modes, 
corresponding well with what is observed in free 
vibration.  

5. CONCLUSIONS 
The contours of fluid excitation shown here have 

been obtained from precise controlled vibration 
experiments with a much higher resolution than in 
any previously existing data sets. Here we have 
shown just a few examples of the type of analysis 
that can be performed with these contours. We have 
studied the energy balance along constant 
normalized velocity cuts through the fluid 
excitation contour plot within the amplitude-
frequency plane. This allows us to gain a deeper 
understanding of the mode transitions that occur in 
free vibration. The hysteretic mode transition occurs 
because of the ‘S’ shape of the fluid excitation 
contours, leading to two possible stable amplitude 
response solutions at a given flow velocity, with an 
unstable solution found at an amplitude between the 
stable states, where dE*/dA* > 0. The intermittent 
switching mode transition, on the other hand, occurs 
because of the existence of overlapping vortex 
mode regimes. 

We intend to present results and phenomena 
described here, as well as to discuss further 
controlled vibration results, transient behaviors, and 

to examine the effects of mass ratio, damping, and 
Reynolds number 
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