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ABSTRACT

This paper describes Reduced Order Modeling
(ROM) in Fluid Structure Interaction (FSI)
and discusses Proper Orthogonal Decomposition
(POD) utilization. In fact to use POD in a mov-
ing domain, a reference fixed domain, with a fixed
uniform grid, is introduced. Next the solution
is interpolated from the time-variant grid to the
fixed uniform grid to obtain the global velocity
field (fluid and structure). Thus PODs modes are
obtained for the global velocity field and not only
for the fluid velocity. Then a method to reduce
dynamical system in rigid body fluid interaction
is developed. This method uses the fictitious do-
main method approach, which consists in treating
the entire fluid-solid domain as a fluid by adding
a distributed Lagrange multiplier in the weak for-
mulation on solid domain. The method is tested
on a two-dimensional case of rigid body immersed
in a fluid. The results are compared with compu-
tational solution and discussed.

1. INTRODUCTION

Constructing a Reduced-Order Model (ROM), in
order to reduce the size of the model and the
computational cost and also to obtain a good
simulation, is essential in this Fluid Structure
Interaction (FSI) domain. We chosed to study
POD capacities in fluid structure interaction. In
fact, this method, introduced by Lumley (1967)
in fluid mechanic, has been intensively used since
90’s in many applications. In structure mechan-
ics, POD is a recent investigation domain similar
to modal analysis. Its study in moving domain
case is recent. The moving carater of fluid do-
main is the main difficulty for application, be-
cause this characteristic is incompatible with the
POD classic formulation.

2. THE PROPER ORTHOGONAL
DECOMPOSITION (POD)

In this section, the POD method is briefly intro-
duced. A detailed methodology is already stip-
ulated in literature (Allery (2002); Berkooz and
al. (1993)). The POD consists in finding for a
field v (t) ∈ H (H a Hilbert space, t ∈ [0, T ], a
function Φ ∈ H which gives the optimum repre-
sentation for v on [0, T ] in H norm. In the case
of H = L2(Ω), it leads to solving the following
eigenvalue problem :

∫

Ω

R (x, y) Φ (y) dy = λΦ (x) (1)

where R is the symetric spatial correla-
tion tensor, defined non-negative, R (x, y) =
〈v (•, x) ⊗ v (•, y)〉, where 〈•〉 denotes the tempo-
ral average or the statistic average operator for a
random field (in the case of process ergodic this
average are the same). Morever if the associated
operator to (1) is compact, the Hilbert-Schmidt
theory assures that there exists a set of positive
eigenvalues (λi)i≥1

which decrease to 0 and a set

of eigenmodes (Φi)i≥1
which is a Hilbertien basis

for H. The eigenvalue λi is the energy captured
by the mode Φi. Thus, in practice only one ten
modes are enough to keep more than 99.99% of
the total energy. Thus a reduced space basis and
a reduced dynamic system, obtained by project-
ing Navier-Stokes equation on this basis, can be
constructed.
In the case of fluid structure interaction, the Ω
domain would be the fluid domain, which moved.
A POD basis, dependent on time, would be ob-
tained, what is unconsistent.

3. POD APPLICATION IN MOVING
DOMAIN

To resolve this difficulty, a reference fixed domain
Ω, with a fixed uniform grid, is introduced, which



contains all the different configurations of the
movings domains (Ω = Ωf (t)∪Ωs(t), where Ωf (t)
denotes the fluid domain and Ωs(t) the solid do-
main). Thus fluid-rigid body interaction prob-
lems can be study using fictious domain method
(Glowinski and al. (1999); Laure and al. (2005)).
This method consists in treating the entire fluid-
solid rigid domain (the fictious domain) as a fluid,
by using Navier-Stokes equations for solid rigid
domain. Thus a weak formulation for the global
domain Ω can be used. Find a field u such as
div u = 0 and :
For all Φ a virtual velocity field, div Φ = 0 :

∫

Ω

ρ

(

∂v

∂t
+ v · ∇v

)

Φdx +

∫

Ω

2νtr (D (v)D (Φ)) dx

+

∫

Ω

IΩS
tr (D (λ)D (Φ)) dx = 0

(2)

D (v) =
1

2

(

∇v + t∇v
)

, ρ et ν are defined on

the global domain Ω :

ρ = IΩf
ρf+

(

I − IΩf

)

ρs ; ν = IΩf
νf+(I − IΩF

) νs

with IΩs (x, t), the characteristic function of solid
domain ( 1 if xinΩs (t), else 0). νS is a penaliza-
tion factor of the contrainst D (v) = 0, which is
solid rigid contrainst, and the symmetrical ten-
sor D (λ) is the Lagrange multiplier associated
to this contrainst. The solution at each time
step is interpolated from the time-variant grid to
the fixed uniform grid, and the basis obtained by
solving (1) is truncated at N such as more than
99.99% of energy is captured. Thus the velocity
field v is evaluated by using this truncated basis

v =
N

∑

i=1

ai (t)Φi (x)

This decomposition is used in (2) to obtain the
following reduced dynamical system :
For n = 1..N :







































N
∑

i=1

dai

dt
Ain +

N
∑

i=1

aiBin +

N
∑

i=1

N
∑

j=1

aiajCijn

=
N

∑

i=1

biEin

∂IΩf

∂t
+ v · ∇IΩf

= 0

(3)

with

Ain =

∫

Ω

ρΦiΦndx

Bin =

∫

Ω

2µ Tr (D (Φi)D (Φn)) dx

Cijn =

∫

Ω

ρΦi · ∇ΦjΦndx

Ein = −
∫

ΩS

Tr (D (Φi)D (Φn)) dx

(4)

The initial problem is transformed in a more sim-
ple system of ordinary differential equation in
ai(t) with low degrees of freedom. Indeed, in
practice the POD method gives a basis which is
maximal in energy sens with only few functions.

4. TEST ON A TWO DIMENSIONAL
CASE

O G

Ωf

Ωs
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Figure 1: Schematic description of the problem
domain

The studied case considers a two-dimensional
rigid cylinder immerged in an annular cavity
(Figure 1(a)). At the beginning, the fluid is at
rest and the rigid cylinder is removed from its
equilibrium position. Due to the spring effect
the solid moves, starts to oscillate and generates
a fluid flow. The fluid flow generates fluide forces,
which damp the fluid oscillations.

The motion of the fluid is governed by the
incompressible Navier Stokes equations in the



ALE formulation Sarrate and al. (2001); Abouri
and al. (2004) and computed using Castem code
(CEA, 2005) during 6.28 s using the followings
: R1 = 0.1 m, R2 = 0.2 m, ρf = 1000 kg.m−3,
ρs = 31.83 kg.m−3, µf = 0.001 kg.m.s. The
initial coordinates of the rigid body center are
x0 = (0, 005, 0), and “at rest” the length of spring
is equal to 0.1 m.

For the spatial discretisation of the Navier
Stokes equations the finite element Crouzeix-
Raviart (Q2 − P1) hasb been used. For the
velocity-pression coupling, a projection method
has been applicated, and a SUPG method for the
convection term stabilisation has been employed.

The rigid body displacement follows the fol-
lowing equation :

x (t) = x0cos [ω (ξ) t] e−ξωt (5)

where ω (ξ) = ω
√

1 − ξ2.
The damping parameter ξ can be computed

on one pseudo-oscillation period, which allows
to evaluate the numerical solution obtained by
Castem. Indeed,

ξ =
δ√

4π2 + δ2
(6)

where δ denotes the decrement logarithmic curve
of rigid body displacement. On Figure 2, the
analytical solution and that obtained by Castem
show a good fit, which validates the solution.

time

Castem solution

analytical solution

Figure 2: Solid gravity center displacement

4.0.1. Reduced order modeling

The method presented in section 3 is tested with
this results. Hundred snapshots have been taken
during one pseudo-oscillation period.

First, the POD vectors have been searched and
the reconstructed velocity has been defined as

vN (x, t) =
N

∑

n=1

an (t) Φn (x)

and is compared to the initial velocity. On Figure
4, we can see that we have a good reconstruction
with 3 modes and a maximal error near to the
fluid-solid interface.

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−8.25 −6.90 −5.55 −4.20 −2.85 −1.50 −0.15 1.20 2.55 3.90
x1e−3

y

x

(a) vx

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−6.45 −5.10 −3.75 −2.40 −1.05 0.30 1.65 3.00 4.35 5.70
x1e−3

y

x

(b) vy

Figure 3: Isovalues of the first and second veloc-
ity component at the snapshot 70
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Figure 4: Isovalue of the difference between the
reconstructed solution with 3 modes and the ini-
tial at the 70 snapshot

In fact the first POD eigenvalue contains 99.2%
of the total kinetic energy and with three vectors
almost 99.99% of the energy is captured.
That is why with only three POD vectors the
reconstructed velocity is a good approximation
of the initial velocity.

Next, the low order dynamical system with
three modes is constructed and the temporal co-
efficients obtained are compared with those ob-
tained by computing the POD vector (at each
snapshot ti, an (ti) = (v (•, ti) ,Φi)). There is a
good conformity between them, for example for
the first temporal coefficient a1 (Figure 5(a)).

In the following the low order dynamical sys-
tem during a longer period than the snapshot pe-
riod will be presented. The solution obtained has
not been compared to a numerical solution, but
the gravity center displacement can be predicted
by an analytical solution and compared to those
computed. In fact, in this case the analytical
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Figure 5: Low order dynamical system result

solution is Xg(t) = Xg(0)cos
(

ω
√

1 − ε2

)

eεωt, ε

being evaluated on the snapshot period. The so-
lution for a period longer than 10 times the snap-
shot period gives good prediction for the gravity
center position (Figure 5(b)). It is an adequate
criteria to conclude that the reduced system ob-
tained gives a good result with a few degrees of
freedom and this case gives a good prediction for
simulate a period longer than the snapshot pe-
riod.

5. CONCLUSION

We have presented POD methodology and its ap-
plication in fluid-structure interaction (FSI). The
principal difficulties to apply it were the spatial
properties of POD modes and the fact that in
FSI the fluid domain moves in time. Thus we
introduce a fictious fixed domain whose contains
all movings domains. Next a Lagrangian multi-
plier is used formulate Navier-stokes equation on
solid domain. Thus we can formulate a reduced
dynamic system in case of FSI. This system is
tested on a two dimensional case and good ade-
quation are found beetween initial solution and
reduced
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écoulements de fluides chargés. In 1er colloque
du GDR interactions fluide-structure, page 1,
Sophia Antipolis, Septembre (2005).

J. Sarrate, A. Huerta, and J. Donea. ALE for-
mulation for fluid-rigid body interaction. Comp.
Meth. in Ap. Mech. and Eng., 190(6) :31713188,
(2001).

D. Abouri, A. Parry, and A. Hamdouni. stable
fluid rigid body interaction algorithm : applica-
tion to industrial problems. In 8th Int. Symp.
on E. Techn. for Fluids, Structures, and FSI,
ASME/JSME, pages 2529, San Diego California
USA, (July 2004).


