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ABSTRACT

A method for extracting the eigenvalues and
eigenmodes from complex coupled fluid-structure
interaction (FSI) systems is presented. The
FSI system considered in this paper comprises
a one-sided incompressible potential flow over a
finite-length compliant wall. The flow field is
determined by constructing a boundary-element
solution of the Laplace equation, while finite-
differences are used to solve a modified beam
equation for the compliant-wall motion. The crux
of the method lies in reducing the system equa-
tions to a single set of coupled linear differen-
tial equations in the interface variable. There-
after, standard Krylov subspace projection meth-
ods are used to extract the system eigenvalues.
The method is used to investigate the effect on
stability of modifications to the well-studied case
of a simple elastic plate held at both its ends. Of
particular note in our results is that the addi-
tion of a restraint on the panel can trigger single-
mode flutter at pre-divergence-onset flow speeds.
We explain the existence of this new instability in
terms of the changed phase-relation between wall
motion and the fluid loading caused by added re-
straint.

1. INTRODUCTION

This paper revisits what is perhaps the most fun-
damental problem in flow-structure interaction,
that of a potential flow interacting with a flexible
panel that surmounts a baffle. The panel-flutter
problem has a long history of investigation that
stems from the work of Dugundji et al (1963)
who first showed that with increasing applied
flow speed, the panel succumbs first to divergence
(or bucking) instability that gives way to modal-
coalescence flutter at higher flow speeds. This
problem continues to receive attention because
its apparent simplicity masks some extraordinar-
ily complex dynamics as evidenced by, for ex-
ample, [2-4]. Pitman and Lucey (2007) have re-
addressed the original problem using a new ap-
proach that can extract the exact eigenmodes of

the system in a rational limit of discretisation.
In this paper we apply that method to the

study of panels with complex boundary con-
ditions, related to the configurations of Peake
(2004), and to panels with spatially varying prop-
erties. By doing so, we show how the introduc-
tion of additional constraints can create a new
type of instability within the system.

Figure 1: Schematic of the FSI system studied;
the spring and dashpot foundations are absent
for an unsupported elastic plate.

A schematic of the fluid-structure system mod-
elled is shown in Fig. 1. It comprises a finite-
length flexible flat plate held at both its ends; to
investigate more complex types of complaint wall
we can include a uniformly distributed spring
foundation and dashpot-type damping, the lat-
ter to mimic the effect of energy dissipation in the
plate/wall material. The plate/wall interfaces a
uniform flow, the perturbations to which are as-
sumed irrotational. We therefore neglect viscous
effects and thus the model is an approximation to
(infinitely) high-Reynolds number flow and cases
where the boundary layer is very thin relative to
disturbance wavelength.

2. SYSTEM EQUATIONS

In this paper the linear motion of the compli-
ant wall is governed by the two-dimensional beam
equation with an extra term added to account for
the addition of a uniform dashpot-type damping
(d∂η/∂t) to model the effects of energy dissipa-



tion in the structure.
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where η(x, t), ρm, h and B are, respectively, the
plate’s deflection, density, thickness and flexural
rigidity, while p(x, y, t) is the unsteady fluid pres-
sure. In the present problem we apply hinged-
edge conditions at the leading and trailing edges
of the plate although in the method that follows
there is no necessary restriction on such bound-
ary conditions.

The fluid is modelled using the assumptions of
incompressible and irrotational flow. This is an
appropriate approximation for the high Reynolds
number flow outside the boundary layer. How-
ever, rotationality and viscous effects of the
boundary layer are ignored. This therefore im-
plies the boundary layer is thin with respect to
the wall disturbance wavelength and amplitude.
A velocity perturbation potential φ(x, y, t), sat-
isfying Laplace’s equation and subject to the in-
terfacial kinematic condition, is introduced, the
solution of which is then used in the linearised
unsteady Bernoulli equation,

∆p = −ρ∂φ
∂t
− ρU∞

∂φ

∂x
, (2)

where ρ and U∞ are, respectively, the fluid den-
sity and flow speed.

3. EIGENVALUE DETERMINATION

Where Lucey and Carpenter (1992) used an ex-
plicit time-marching scheme for the solution of
the wall position, the objective here is to avoid
temporal discretisation by direct solution of a sin-
gle set of ordinary differential equations. The de-
flection of the fluid-structure interface η(x, t) will
be the single resulting variable.

A boundary-element solution for the flow field
is expressed as the sum of a mean flow plus a
distribution of singularities along the deforming
interface. In this case, zero-order linear source(-
sink) elements are chosen for the singularities,
with the strength of each element denoted σ(x).
With the discretisation of the compliant surface
into N elements, each with constant strength σi,
the vector of element strengths may be deter-
mined through a balance of the normal velocity
components at the wall

{σ} = 2U∞[D1]{η}+ 2{η̇} , (3)

where {η} is the vector of interfacial displace-
ments at the N evaluation points, the overdot

denotes time-differentiation, and [D1] is the first-
order spatial differentiation finite-difference ma-
trix operator.

The singularity strengths (σ) determined
through Eqn. 3 are used to evaluate the tangen-
tial velocity and perturbation potential for each
element of the interface. Substitution of these
expressions and Eqn. 3 into Eqn. 2, yields an ex-
pression for the forcing pressure in terms of the
interfacial displacement alone giving

−{∆p} =2ρU2
∞[T ][D1]{η}+ 2ρU∞[T ]{η̇}

+2ρU∞[T ][Φ]{η̇}+ 2ρ[Φ]{η̈} , (4)

where [T ] is the matrix of tangential-velocity in-
fluence coefficients. The form of Eqn. 4 shows
the pressure to comprise the hydrodynamic stiff-
ness (curvature effects), followed by two terms
that yield the hydrodynamic damping (Coriolis’
effects) and the final term that represents the
hydrodynamic inertia (added-mass effects). The
solution method for the flow field is described
in more detail in Lucey et al (1997) wherein ex-
pressions for the various influence coefficients are
listed.

The wall equation, Eqn. 1, is couched in finite-
difference form using a set of N lumped-mass
points that correspond to the boundary-element
panel control points. Substituting the pressure-
perturbation vector of Eqn. 4 into this finite dif-
ference expression gives

{η̈} = [E]{η̇}+ [F ]{η} , (5)

where

[E] =(ρmh[I]− 2ρ[Φ])−1×
(2ρU∞[T ] + 2ρU∞[T ][Φ]− d[I]) ,

[F ] =(ρmh[I] + 2ρ[Φ])−1×(
2ρU2

∞[T ][D1]−B[D4][Φ]−K[I]
)
.

where [I] is the identity matrix and [D4] is
the fourth-order spatial differentiation (penta-
diagonal) matrix operator.

We now solve Eqn. 5 using a standard state-
space method. The second-order N×N system is
transformed to the following first-order 2N × 2N
system

{ẇ} = [H]{w} , (6)

where

[H]{w} =
[

0 I
−F E

]{
{η}
{η̇}

}
, (7)



for the new variable w. Assuming that all parts
of the system move with the complex frequency,
s = sR + isI , we can write

w = W exp (st) , (8)

and substituting this into Eqn. 6, yields

(s[I]− [H]) {W} = 0 . (9)

The solution of det (s[I]− [H]) = 0 then gen-
erates the eigenvalues. These have been evalu-
ated using the ARPACK solver through the EIGS
command in the MATLAB software. Having
found the eigenvalues, these can then be substi-
tuted back into Eqn. 9 to extract the complex
eigenmode, {W}T for the N interfacial points.

4. RESULTS

In the results presented in this section, we use the
non-dimensional scheme of Lucey et al (1997).
This scheme is appropriate for the finite system
studied here. The non-dimensional control pa-
rameter (stiffness ratio) and time are given by

ΛF =
ρU2
∞L

3

B
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L

}(
1
h

)
t. (10a,b)

Additionally, for cases where structural damping
is introduced, the non-dimensional damping co-
efficient is,

d′ =

(
L2

2π2
√
ρm(B

)
d . (11)

4.1. Simple elastic plate

Figure 2 shows the variation of eigenvalues with
non-dimensional stiffness ratio. The stiffness ra-
tio ΛF could be interpreted as a measure of the
flow speed for given plate properties. Figs. 2a
and 2b are the variation of the non-dimensional
oscillatory, s′I , and growth/decay, s′R, parts of
the eigenvalues respectively. The solution can be
broken into four regions, these being: a neutrally
stable pre-divergence region, a divergence loop, a
small neutrally stable divergence recovery zone,
and finally a region of modal coalescence flutter.
Figures 2c, 2d and 2e show snapshots of the wall
motion for modes in the pre-divergence, diver-
gence and divergence-recovery zones respectively.
In these, and following modal plots, the thick
line indicates the final wall position in the time-
sequence of plots; the wall-position snapshots are
the eigenmodes that correspond to the eigenval-
ues at specific points in the associated eigenvalue
plots.
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Figure 2: Elastic-plate. Eigenvalues and snap-
shots of wall motion at various flow speeds,
Mode-1 amplifying, for t′ : 0 → 793 over 20
time steps each of duration ∆t′ = 39.6 at: (c)
ΛF = 17.6, (d) ΛF = 138, and (e) ΛF = 250.

4.2. Inhomogeneous flexible plates

Figure 3 shows the variation of eigenvalues and
eigenmode snapshots for a wall with identical
properties as the simple elastic plate used in
Fig. 2, except that the flexural rigidity param-
eter of the wall (B) is varied linearly along the
length of the wall. In this case, the mean value
of the flexural rigidity (BAV ) is identical to the
uniform value of Fig. 2 and the non-dimensional
stiffness ratio ΛF is based on this value. The gra-
dient is set so that B varies from 1.95BAV at the
upstream edge down to 0.05BAV at the trailing
edge.

Figures 3c, 3d and 3e show snapshots of the
unstable eigenmodes at various stages through-
out the divergence loop. Qualitatively, the form
of both the eigenvalue and eigenmode plots of
Fig. 3 are similar to Fig. 2. However, the addi-
tion of a linear variation of the flexural rigidity
such that the upstream end is more rigid than
the downstream end tends to push the divergence
loop down and to the right. This indicates that
stiffening the upstream half of an elastic plate
tends to stabilise the system in a similar man-
ner to the addition of structural damping. Con-
versely, computations performed with a stiffened
downstream end tended to destabilise the system
by pushing the divergence loop up and to the left.

4.3. Multiple hinged boundary conditions

Figure 4 shows results for the same elastic plate
as that used for Fig. 2, except that an extra
hinge constraint has been added at a distance of
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Figure 3: Elastic plate with material inhomo-
geneity. Eigenvalues and snapshots of wall mo-
tion in the divergence range of flow speeds, Mode-
1 amplifying, for t′ : 0 → 793 over 20 time steps
each of duration ∆t′ = 39.6 at: (c) ΛF = 70.5,
(d) ΛF = 150, and (e) ΛF = 220.

0.3L from the upstream edge. Note the increased
range of values of ΛF over which the eigenvalues
are plotted.
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Figure 4: Elastic plate with a boundary con-
straint at 30% chord. Eigenvalues and snapshots
of wall motion, for t′ : 0→ 396 over 20 time steps
each of duration ∆t′ = 19.8 for: Mode-3 ampli-
fying for (c) AF = 100, and Mode-1 amplifying
for (d) AF = 300, and (e) AF = 800.

For the fundamental (most unstable) mode,
there now exists a pre-divergence range where
wall motion is slightly attenuated. However,
the third mode is unstable in this pre-divergence
range. There is then a divergence loop that
leads into modal coalescence-flutter type instabil-
ity with no post-divergence recovery zone. The
primary differences with the simple elastic plate
of Fig. 2 are: a) the attenuation of most modes in
the pre-divergence range; b) the increased stabil-

ity of the system as a whole with the divergence
onset occurring at much larger values of ΛF ; c)
the lack of a post-divergence recovery zone and;
d) a specific mode becomes unstable at low values
of ΛF , in the limit of ΛF → 0.

The increased stability of the system could be
anticipated due to the fact that a hinge joint
shortens the effective length of the elastic plate.
Basing ΛF on the length of the longest part of
the divided wall places the divergence loop into
a similar range of values as seen in Fig. 2. How-
ever, we note the appearance of a new instabil-
ity that occurs in the limit of zero flow speed.
Fig. 4c reveals that this principally comprises
the third in-vacuo mode which is destabilised by
the inclusion of the additional hinge joint. This
single-mode flutter is amenable to stabilisation
through the inclusion of structural damping. Re-
sults not presented here show that, for example,
when d′ = 0.082, the non-dimensional flow speed
rises to ΛF = 400 and divergence then becomes
the critical instability with increasing flow speed.
This new instability is discussed in detail in Sec-
tion 5 below.

Figure 5 is for the same configuration as Fig. 4,
except that the hinge joint has been placed at
0.5L. The shape of the eigenvalue loci in Fig. 5
differs from Figs. 4 and 2 in that two diver-
gence loops now exist. Figs. 5c and 5d show
the corresponding eigenmode snapshots for the
inner and outer divergence loops respectively at
ΛF = 1000. Two divergence loops appear be-
cause the addition of a hinge joint at 50% intro-
duces more possible configurations for instability
to occur. Divergence-type instability may occur
on either half of the divided panel with each half
destabilising in-phase or out-of-phase (as seen in
Figs. 5c and 5d respectively). There also exists
a small amount of higher-mode instability in the
limit of ΛF → 0, although this instability is not
as severe as that in Fig. 4.

5. ON THE SINGLE-MODE FLUTTER
OF FLEXIBLE PANELS

We now investigate the mechanism for the
pre-divergence-onset single-mode flutter seen in
Figs. 4 and 5 that appeared with the introduc-
tion of an additional constraint on the flexible
panel. We first note that it is the third mode
that becomes unstable. Fig. 2 indicates that this
mode is neutrally stable for the standard case of
an elastic plate held at just its ends; we present
its eigenmode at ΛF = 25 in Fig. 6a. In Fig. 6b,
we plot the phase angle of the three components
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Figure 5: Elastic plate with a boundary con-
straint at 50% chord. Eigenvalues and snapshots
of wall motion, for t′ : 0→ 99 over 20 time steps
each of duration ∆t′ = 4.95 for: (c) Mode-1 am-
plifying for AF = 1000, (d) Mode-2 amplifying
for AF = 1000, and (e) Mode-3 amplifying for
AF = 2500.

of the forcing pressure given by Eqn. 4 and their
total (−∆p) relative to that of plate velocity, η̇.
The spatial distribution of work done by the fluid
over one cycle of oscillation, W (x), is the integral
of (−∆p)η̇ over one period of oscillation and then
spatial integration over the entire panel yields the
total work done at the interface. Without per-
forming such integrations, it is clear that a phase-
angle difference between pressure and plate ve-
locity of nπ/2 gives W (x) = 0 when n is an
odd integer (orthogonal), a positive value when
n/2 is even (in-phase), and a negative value when
n/2 is odd (anti-phase). A small departure, ±ψ,
from exact orthogonality also provides a mecha-
nism for irreversible energy transfer between fluid
structure. Fig. 6b indicates that the phase value
of total pressure is largely orthogonal to that of
the velocity (the zero of the horizontal axis). Ex-
act orthogonality of −∆p throughout x/L would
mean that zero energy transfer occurs at every
point. However, this is not the case; ±ψ is seen,
especially in the regions adjacent to the nodal
points of the mode shape in Fig. 6a. In fact these
are not exact nodes at non-zero flow speed; an-
imations reveal that the modal motion contains
a form of constrained upstream travel through
its cycle. Thus, the phase departures mean that
spatially-dependent irreversible energy transfer -
to and from the panel - occurs through the cycle
of oscillation,. However, the exact symmetry of
relative phase of pressure about x/L = 0.5 means
that these localised energy transfers sum to zero
over the entire panel and hence yield the global
neutral stability of this mode. We now demon-

strate how the introduction of a constraint breaks
the balance of energy transfers within this sum.

Figure 6: Standard elastic panel. Neutrally-
stable third mode at ΛF = 25, (a) snapshots of
wall motion, and (b) phase of pressure loading
relative to plate velocity [Legend: (1) — (thick)
= total pressure; (2) — (thin) = hydrodynamic
stiffness; (3) - - = hydrodynamic damping; (4)
– · – = hydrodynamic inertia; (5) · · · = wall dis-
placement].

A hinge constraint is introduced at the loca-
tion of the upstream quasi-node seen in Fig. 6a.
Eigenvalue calculations then show that this trig-
gers third-mode flutter of the type seen in Fig. 4.
Figs. 7a and 7b, at ΛF = 25, show the mode
and relative (to plate velocity) phase of pressure
that can respectively be compared directly with
Figs. 6a and 6b to ascertain the effect of the
added constraint. We first note that the impo-
sition of an exact upstream node forces a mod-
ification to the mode shape in its vicinity while
the downstream quasi-node is largely unchanged.
Contrasting the relative phase of pressure plots,
a sharp change now occurs at the exact node as
would be expected; however, this does confirm
that it is wave-travel in the unrestrained case that
creates regions of non-orthogonal pressure load-
ing. The key feature of Fig. 7b is that the relative
phase of −∆p is not symmetric about x/L = 0.5
and nor are each of its constituent hydrodynamic
stiffness, damping and inertia terms. The sym-
metry breaking occurs principally in the region



x/L : 0.32 → 0.5. Over one cycle, the sum, over
the whole plate, of localised irreversible energy
transfers is positive and therefore the mode is
globally unstable. This explanation is consistent
with the stabilising effect of structural damp-
ing that provides a means of irreversible transfer
from the plate and this offsets the net transmis-
sion of energy to the plate by the hydrodynamic
force.

Figure 7: Elastic panel with an added hinge con-
straint. Single-mode flutter mode at ΛF = 25,
(a) snapshots of wall motion, and (b) phase of
pressure loading relative to plate velocity [Leg-
end as in Fig. 6b].

6. CONCLUSIONS

This paper presents the use of linear discretisa-
tion and Krylov methods for eigenvalue extrac-
tion from large matrices to give accurate deter-
mination of linearised fluid-structure interaction
problems. These methods were then applied to
the determination of eigenvalue loci and corre-
sponding eigenmodes for a simple elastic plate
with complex boundary conditions.

The addition of a hinge constraint within the
panel’s streamwise extent is found to stabilise the
system with respect to divergence by decreasing
the effective length of the flexible panel. How-
ever, it also makes the panel prone to flutter in-
stability of a higher-order mode. The mechanism
for this single-mode flutter is explained through

an examination of the phase of the pressure load-
ing relative to that of the plate velocity. It is
shown that spatially localised irreversible energy
transfers can occur. In the unrestrained case a
symmetry exists for these two-way transfers that
yields neutral stability for the system. Intro-
ducing a constraint breaks this symmetry and
thereby triggers instability. Unlike divergence in-
stability, this new instability can be controlled by
the effect of structural damping.
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