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ABSTRACT

A new computational model is developed and used
to conduct a comprehensive study of the two-
dimensional linear stability of a cantilevered flex-
ible plate in uniform flow. Boundary-element
and discrete-vortex methods are used to model
the flow field. The plate is described by a finite-
difference form of the beam equation. Stabil-
ity is assessed by casting the system equation
in State-Space form and directly extracting the
eigenmodes. We also perform numerical simula-
tions to expose the cause and nature of system
instabilities. We show that, as flow speed is in-
creased, short plates succumb to single-mode flut-
ter caused by irreversible energy transfer while
the critical instability for long plates is similar
to the Kelvin-Helmholtz type of modal-coalescence
associated with the flutter of panels held at both
ends. Within this framework, the effects of plate
length, an upstream rigid splitter plate, channel-
wall proximity, and the wake are evaluated and
interpreted.

1. INTRODUCTION

The linear stability of the two-dimensional sys-
tem illustrated by Fig. 1 is studied. While
this system is of fundamental interest, the phe-
nomenology of its dynamics also underlies the be-
haviour of many physical systems ranging from
fluttering flags, to oscillations of the human soft-
palate that create snoring noises, and to energy-
harvesting devices that could extract fluid energy
through its transfer to the plate in a process of
controlled destabilization.

The early paper of Kornecki et al. [1] is per-
haps the starting point for interest in the prob-
lem at hand. Using ideal flow they studied a
flexible plate embedded in an infinite domain of
fluid, as did the recent work of [2-5]. This funda-
mental configuration has been extended to that
of a flexible plate mounted in plane channel flow

[6-9]. These studies predict that the plate loses
its stability through flutter that sets in beyond
a critical uniform flow speed or Reynolds num-
ber in the case of viscous channel flow [8,9]. For
short plates the flutter mode is predicted to com-
prise a combination of the first and second in-
vacuo modes while for long plates, or plates with
heavy fluid loading, the critical mode is domi-
nated by higher-order modal content. While the
methods of this paper serve to reproduce many
of these findings, a key contribution of our work
is to provide an exposition of instability mecha-
nisms. Through this understanding, we are then
able to provide a clearer interpretation of the
quantitative effects caused by refinements to the
Kornecki-system such as the inclusion of a rigid
splitter-plate mounted upstream of the flexible
plate, channel walls, and the vortical wake that
is shed from the trailing edge of the plate (see
also [10]).

Figure 1: Schematic of the fluid structure system
studied.

2. METHODS

The irrotational part of the flow field is found
using a linearised boundary-element method
(BEM) while the vorticity shed from the trail-
ing edge of the flexible plate is modelled using
the discrete-vortex method (DVM). In the ap-
plication of the BEM, second-order vortex pan-
els are used on the rigid central surface and the



flexible plate because of the discontinuity of tan-
gential fluid velocity across these surfaces; they
can therefore be considered as lifting surfaces.
It is the distributed lift that drives the motion
of the flexible plate. Source-sink panels are ap-
plied on the rigid channel walls. A schematic of
the scheme is shown in Fig. 2. The singularity
strengths are determined by enforcing the no-flux
boundary condition at every panel control point
and, for the central surfaces, continuity of the dis-
tributed vorticity between adjacent panels. Thus
the vector of singularity strengths is given by

{Γm} =
[
IN
im

]−1
{
U∞θm + η̇m + uNb

m

}
, (1)

where Γm = γm + λm for the vortex ele-
ments.

[
IN
im

]−1 contains, in addition to the nor-
mal influence-coefficients of the singularities, the
boundary conditions of: a) vortex strength conti-
nuity at panel end points; and b) zero vorticity at
the plate’s trailing edge (thus enforcing the stan-
dard Kutta condition for linear displacements of
zero pressure difference at the trailing edge). θm

is the panel’s angle to the horizontal, which in the
linear framework is the streamwise spatial deriva-
tive of the boundary, ηm, while uNb

m is the normal
component of the velocity induced by the wake
vortices evaluated at control point m.

Figure 2: Summary of elements used in the flow-
field computational model.

The unsteady Bernoulli equation is used to
determine the pressure distribution on the flex-
ible plate. The transmural pressure is then
used as the forcing term in the one-dimensional
thin flexible-plate equation couched in finite-
difference form. The motion of the plate and
the fluid flow are fully coupled through deflec-
tion, vertical velocity and acceleration of the two
media at their interface. For the vortical wake,
Gaussian vortex blobs are shed at each time-step

of the plate’s motion; the circulation assigned to
each blob is such that Kelvin condition is en-
forced. Linearised convection is adopted in the
present study whereby the blob centres remain
in the horizontal plane of the undisturbed plate
and thus travel downstream only with the speed
of the mean flow. This approach allows a single
system (matrix) equation to be written as fol-
lows.
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where [B] are matrices of singularity influ-
ence coefficients, [D4] is a fourth-order spatial-
differentiation matrix and [I] is the identity ma-
trix. ρ, h, d and B are respectively, the ma-
terial density, thickness, dashpot-type damping
coefficient and flexural rigidity of the plate, the
dynamics of which appear on the left-hand side
of the equation. The pressure perturbation that
drives the plate motion appears on the right-hand
side, where ρf and U∞ are the fluid density and
flow speed, noting that our formulation permits
a time-dependent uniform flow to be used. The
pressure terms in the line order of Eqn. 2 can
be interpreted in the following way: Line 1 con-
tains the deflection-based hydrodynamics stiff-
ness plus a deflection-based cross term arising
from an unsteady mean flow; Line 2 contains
the plate-induced hydrodynamic damping; Line
3 contains the plate-induced hydrodynamic iner-
tia; and Line 4 comprises the respective contribu-
tions to hydrodynamic damping and inertia from
the wake vorticity.

We take two approaches to the solution of Eqn.
2. Neglecting the wake-vortex contributions it
becomes a second-order differential equation in
{η}. Setting w1(t) = η(t) and w2(t) = η̇(t) and
rearranging the matrices in companion-matrix
form, yields a system equation in the form

ẇ = [H]w, where w = {w1, w2}T . (3)

Single-frequency time-dependent response is as-
sumed at ω which is a complex eigenvalue of
[H]. Positive ωI and ωR respectively represent
the oscillatory and amplifying parts of the re-
sponse, the eigenvector of which is readily as-
sembled. However, we note that this approach



can be adapted to include wake effects. This re-
quires an additional set of NW variables, {ω},
to be defined as being the discrete vorticity on
an Eulerian grid in the wake; in the linear as-
sumption the grid simply becomes a line. The
inclusion of a further NW unknowns requires the
enforcement of the vorticity transport equation in
the wake to close the system. The steady Kutta
condition at the trailing edge is replaced by a
condition of continuous vorticiy shedding. This
results in the fluid-strucute system being cast in
the form a first-order differential equation for the
vector of unknowns {η, η̇, ω}T that yields a linear
eignevalue problem.

Alternatively, we perform a time-discretisation
of η in Eqn. 2 and then numerically time-step,
using a semi-implicit method, the equation to de-
termine the system response to some form of ini-
tial or continuing applied excitation. In doing so
we are able to study transient behaviour and re-
veal localsied flow-structure dynamics that when
summed contribute to the system response.

3. RESULTS

We non-dimensionalise using the scheme in
[11,12] and thus

t̄ = t [ρ2
fB

1
2 /((ρh)

5
2 )], Ū = U∞ [(ρh)

3
2 /(ρfB

1
2 )]

and d̄ = d [(ρh)
3
2 /(ρ2

fB
1
2 )]. (4a, b, c)

However, angular frequencies are presented as
a ratio to the frequency of the second in-vacuo
plate mode instead of using the time scale that
appears in Eqn. 4a; this allows a better phys-
ical grasp of the effect of the fluid loading and
accounts for the length of the plate. The non-
dimensional length (or mass ratio) of the flexible
plate and the channel height are defined by

L̄ = L[ρf/(ρh)] and H̄ = H[1/L]. (5a, b)

3.1. Standard case

Figure 3 shows the variation of system eigenval-
ues with applied flow speed for a short plate,
L̄ = 1, effectively, in the absence of channel walls
for which, H̄ = 1 is sufficiently large as demon-
strated by numerical experiments, and with no
upstream splitter plate. For the case of an elastic
plate that generated Fig. 3a, these results com-
pare well with the corresponding results in [7].
Single-mode flutter of the second system mode, is
the critical instability at a non-dimensional flow
speed given by Ū = Uc = 5.452. The inclusion of

dissipation in the same system through structural
damping with a coefficient d̄ = 5 yields the result
of Fig. 3b. The critical flow speed is now higher
and this strongly indicates that the instability is
driven by irreversible energy transfer from the
fluid to the plate. This has been confirmed by
monitoring the phase angle between the pressure
loading and plate velocity in numerical simula-
tions. Both the leading-edge singularity and the
trailing-edge Kutta condition contribute to non-
orthogonality of the pressure and plate velocity.
The product of these terms yields the localised
rate of work done (per unit area of plate) which
is then non-zero when integrated over one period
of oscillation, both locally and when summed to
obtain the energy record of the entire plate.

Figure 3: Fluid-structure behaviour at L̄ = 1,
H̄ = 1 (effectively isolated): Variation of sys-
tem eigenmodes with flow speed where (a) elastic
plate, d̄ = 0, and (b) including structural damp-
ing with d̄ = 5. In this and subsequent eigen-
value plots, the numbers on each figure identify
the mode number in order of ascending frequency
at Ū = 0

Figure 4b shows the energy record during the
numerical simulation of the critical mode, the



motion of which is presented in Fig. 4a. Note
that the simulation is commenced by releasing
the plate from an applied deformation - the thick
black line - in the shape of second in-vacuo mode.
The critical mode, seen to contain strong contri-
butions from the first and second in-vacuo modes,
then evolves from the initial excitation. The sum
of energy transferred from fluid to plate in Fig.
4 shows that energy exchanges are spatially de-
pendent; thus for example, the third quarter from
the leading edge of the flexible is locally unstable
while the fourth quarter is stable. It is the sum
of of all these energy transfers that, in this case,
yields the neutral stability of the system.

Figure 4: Fluid-structure behaviour at L̄ = 1,
H̄ = 1 (effectively isolated): Numerical simula-
tions of system behaviour with d̄ = 0 at the crit-
ical flow speed Uc = 5.452, (a) time-sequence of
instantaneous plate deformation (the thick line
is the initially imposed deformation), (b) time-
variation of work done by fluid on plate with —
(thin), –◦–, –•–, · · · each respectively indicating
total work done and spatial contributions from
the first, second, third and fourth quarters of the
plate from its leading edge.

3.2. Long plate

The effect of plate length (or fluid-to-plate den-
sity ratio) is demonstrated by Fig. 5, in which
L̄ = 10, that can be compared directly with
the short-plate result of Fig. 3a. Instability
now sets in at approximately Ū = 0.63 of the
fluid-structure Mode 2. However, this is not a
single-mode flutter. Instead, it is the result of
modal coupling - an inexact modal-coalescence
- with Mode 3 with Mode 2 having interacted
with Mode 1 at lower flow speeds. This insta-
bility is the result of essentially conservative en-
ergy transfers in contrast to the irreversible en-
ergy transfer mechanism of single-mode flutter.
Thus, for long plates, the phase-alignment be-
tween pressure and plate velocity is closer to the
orthogonality that occurs for potential flow over
an infinitely long flexible boundary.

Figure 5: Fluid-structure behaviour at L̄ = 10,
H̄ = 1 (effectively isolated): Variation of system
eigenmodes with flow speed where d̄ = 0.

3.3. Effect of upstream splitter plate

A splitter plate, of length equal to L̄ = 1, is now
introduced to the standard case. The resulting
eigenvalues are shown in Fig. 6; these can be
compared directly with the results in Fig. 3a.
The critical speed rises from 4.452 to 13.547 and
it is Mode 3 that is now critical. Inspection of
Fig. 6 shows that, like the long plate of §3.2,
it is the modal coalescence of Modes 2 and 3
that first destabilizes the plate with increasing
flow speed. The splitter plate serves to distance
the leading-edge singularity, a key contributor
to the phase-relation effects of finiteness, from
the flexible plate, thereby weakening the single-
mode flutter mechanism. For this length of split-
ter plate the lower-speed single-mode flutter is



completely eliminated so that modal-coalescence
instability yields the critical flow speed.

Figure 6: Fluid-structure behaviour at L̄ = 1,
H̄ = 1 (effectively isolated) and splitter plate of
length L̄ = 1: Variation of system eigenmodes
with flow speed.

3.4. Effect of channel walls

The effect of channel walls, with H̄ = 1, is illus-
trated by the numerical simulation that gener-
ated Figure 7 in which the neutrally stable mode
at the critical speed, Ū = Uc = 5.177, is depicted.
The critical flow speed is thus slightly decreased
but in other respects the phenomenology is the
same as that of the unbounded standard case of
§3.1. The reduction to critical speed is caused
by an intensification of the pressure forces due to
the constraints imposed by the channel walls.

3.5. Effect of wake

The effect of channel walls, with H̄ = 1, is illus-
trated by the numerical simulation that gener-
ated Figure 7 in which the neutrally stable mode
at the critical speed, Ū = Uc = 5.177, is depicted.
The critical flow speed is thus slightly decreased
but in other respects the phenomenology is the
same as that of the unbounded standard case of
§3.1. The reduction to critical speed is caused
by an intensification of the pressure forces due to
the constraints imposed by the channel walls.

4. CONCLUSIONS

A new computational model has been developed
for the interaction of cantilevered-free flexible
plate with a low-speed potential flow. The model
permits us to evaluate the effects on stability
of channel-wall proximity, an upstream splitter

Figure 7: The effect of channel walls on the sys-
tem response: Numerical simulation of system
behaviour forL̄ = 1, H̄ = 0.1 and d = 0 at
the new critical flow speed Uc = 5.177, (a) time-
sequence of instantaneous plate deformation (the
thick line is the initially imposed deformation),
and (b) time-variation of work done by fluid on
plate, W, line types same as in Figure 4b

plate and the wake that originates from the trail-
ing edge of flexible plate. Direct extraction of
the fluid-structure eigenvalues is permitted by
the present mathematical formulation. Predic-
tions of the infinite-time system response can
therefore be made. We complement these by
conducting numerical simulations of initial-value
problems that additionally elucidate the localised
responses that, when summed, yield the sys-
tem response. We show that short plates are
destabilsed by a single-mode flutter whereas long
plates and plates with a suitably long upstream
splitter plate are destabilised by modal coales-
cence flutter. While the effect of channel-wall
proximity does not significantly modify the sys-
tem response, the effect of a wake is stabilis-
ing for single-mode flutter but promotes modal-
coalescence flutter.



Figure 8: The effect of an unsteady wake on the
system response. Numerical simulation at L̄ = 1,
H̄ = 1 (effectively isolated) and d̄ = 0. Time
variation of work done by fluid on plate, W̄ , with
(discrete data) and without (continuous data) a
wake at Ūc = 5.452 (the critical speed found
without a wake). Where the data sequences 4,
+, �, × and — (thin), –◦–, –•–, · · · each respec-
tively indicate the work done over the first, sec-
ond, third and fourth quarters of the plate from
its leading edge, while 2 and — (thick) are the
respective sums of these contributions.
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