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THE EFFECTS OF WIND ON PLANTS : A REVIEW
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Département de Mécanique, LadHyX, Ecole polytechnique, Palaiseau, France

ABSTRACT

This review surveys some of the mechanical in-
teractions between wind and plants, from plant
organs to plant systems. The relevant nondi-
mensional parameters are first estimated. Tur-
bulence, plant dynamics and the mechanisms of
interaction are discussed in this context. Some
common features are identified, and they are
analysed in relation with wind-engineering of
man-made structures. Strong coupling between
plants and wind exist, where the plant motion
modifies the wind dynamics. Some related bio-
logical issued are also mentionned .

1. INTRODUCTION

The reader is referred to the full version of this re-
view (de Langre, 2008) for : (a) a complete list of
relevant references, (b) some details on the issues
descrived below, (c) a description of other topics
which are only mentionned in the conclusion.

Some of the earliest work on plant motion un-
der wind goes back to the description of Honamis
(Inoue, 1955) which refer to traveling waves on
wheat. Since then very abundant literature has
been produced on the subject of wind and plants.

Previous surveys such as by Finnigan (2000)
have been more focused on the effect of vegeta-
tion on wind, in particular on its turbulent fea-
tures, rather than on the reverse. Many recent
reviews exist on specific aspects of the direct or
indirect effects of wind on plants, see in (de Lan-
gre, 2008). They address the topics of crop dy-
namics and tree dynamics under wind, seed dis-
persal by wind, ecological effects of wind, effect
of wind on plant growth, or plant evolution under
wind constraint. More general concepts may be
found in the earlier reviews of Mayer (1987) and
Vangardingen & Grace (1991), as well as in the
essential book on plant biomechanics by Niklas
(1992).

2. NONDIMENSIONAL NUMBERS

In view of the immense variety of possible interac-
tions a preliminary dimensional analysis appears

necessary. In addition to the parameters related
to wind and to plant dynamics considered sep-
arately, there exist nondimensional parameters
pertaining to the interactions. They may be de-
rived by elementary dimensional analysis. For a
reference wind velocity U and density ρF , using
the modulus of elasticity E and density ρS for
the solid, two nondimensional parameters arise

M =
ρF

ρS

, CY =
ρF U2

E
, (1)

which are respectively the mass ratio and the
Cauchy number, commonly used in the mechan-
ics of fluid-structure interactions.

The mass ratio is of the order of 10−3 for all
case of wind plant interactions, the density of
vegetal material being typically 103 higher than
air. As M scales the added mass caused by
the fluid motion resulting from the solid motion,
this inertial effect is usually negligible, except for
some plane structures such as leaves where geom-
etry effects play a central role.

The Cauchy number CY , which scales the de-
formation of an elastic solid under the effect of
flow, is defined as the ratio of the dynamic pres-
sure and the modulus of elasticity. For a modu-
lus of 108 Pa, corresponding to soft living vegetal
tissues and for a wind velocity of 10 m/s, corre-
sponding to very high wind conditions at a plant
level, the Cauchy number is of order 10−6. As
this would imply that no deformation can be ex-
pected in the plant, it is clearly inappropriate,
common knowledge showing strong deflections in
plants. In fact the slenderness of plants need to
be taken into account in the deformability: most
vegetal structures are slender in order to access
light and carbon. A slenderness number S there-
fore needs to be defined as the ratio of the max-
imum to minimum cross-sectional dimensions of
the system L and ℓ respectively. The deformation
of a slender beam in bending under a transverse
surface load being proportional to S3, (Niklas,
1992), the convenient set of dimensionless num-



bers now reads

M =
ρF

ρS

, S =
L

ℓ
, CY =

ρF U2L3

Eℓ3
=

ρF U2

E
S3.

(2)
Figure 1a illustrates the influence of the slender-
ness on the order of magnitude of the Cauchy
number. As a slenderness of more than 100 is
not uncommon in stems a Cauchy number of or-
der unity may be expected for a wind of 10 m/s.
Therefore, in contrast to most structures encoun-
tered in classical wind engineering, where the
slenderness may also be large (antennas, cables)
but where the stiffness is usually of two orders of
magnitudes larger, a significant static deforma-
tion of a plant can be expected under the action
of wind. This is an important specificity of wind
effect on plants.

The reduced velocity, denoted UR, may be de-
fined as the ratio of the period of free vibration
of the solid, T , over the advection time across
the solid, here ℓ/U . Considering that the pe-
riod of oscillation of a slender beam scales as
(L2/ℓ)

√

ρS/E the reduced velocity is easily ex-
pressed using the preceding numbers as U2

R =
CY S/M. When the reduced velocity is of order
unity dynamical interactions, such as resonances
or lock-in, may be expected as the two time scales
become close. As illustrated in Figure 1b this
may happen in a large range of wind velocities
and plant slenderness.

3. WIND IN THE PRESENCE OF
PLANTS

The presence of plants affects the characteristics
of wind, so that data used in wind engineering
for man-made structures are often inappropriate
for plants. The review by Finnigan (2000) fully
documents flow and turbulence at the scale of the
plant canopy itself. See also some recent numer-
ical work, such as in (Dupont & Brunet, 2008).

In the absence of vegetation, the distribution
of time-averaged wind horizontal velocity is log-
arithmic, Figure 2a. In a canopy, wind exists,
in the form of an inner boundary layer, Figure
2b. This flow profile then connects to the outer
boundary layer above the canopy. It will now be
referred to as the Canopy Layer as opposed to
the Boundary Layer profile. In terms of turbu-
lence characteristics the Canopy Layer case dis-
plays strong differences with the Boundary Layer.
In the latter, fully developed turbulence results
in the classical Kolmogorov cascade from large
to small scales, sketched in Figure 2a. The corre-
sponding spectrum of horizontal fluctuating ve-

Figure 1: Effect of slenderness on dimensionless
numbers relevant to wind effects on plants. (a)
The Cauchy number may exceed one, which cor-
responds to large plant deformation. (b) The re-
duced velocity may become of order one, which
corresponds to strong dynamical coupling.
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Figure 2: Main differences between Boundary
Layer flow (a,c) and Canopy Layer flow (b,d).
Top: Wind profile and structure of eddies. Bot-
tom: Spectrum of fluctuations of the horizontal
velocity, Suu. See text for features corresponding
to A, B, C.



locity, is shown in Figure 2c. Conversely, in the
Canopy Layer, fluctuations are mainly generated
by a mixing layer instability that develops from
the inflectional wind profile, Figure 2b. This re-
sults in large coherent structures being convected
above the canopy. The corresponding Canopy
Layer velocity spectrum, Figure 2d, differs from
the Boundary Layer spectrum by three aspects.
First, it shows a more pronounced peak at a cen-
tral frequency which is that of the mixing layer
instability (labeled A in the figure). Second, be-
cause of the drag on all elements of plants in
the canopy the dissipation cascade is enhanced,
showing a steeper decrease with frequency (B
in the figure). Finally this interaction with the
plants, as well as the possible swaying of branches
or leaves cause the emission of vortices at higher
frequencies, resulting in a possible second peak
in the spectrum (C).

4. WIND LOAD AND PLANT
RESPONSE

The interactions of wind and plant dynamics may
be described in the framework of modal analysis.
Models such as in Wood (1995); Baker (1995);
Saunderson et al. (1999); Kerzenmacher & Gar-
diner (1998); Spatz & Bruechert (2000) may be
seen as particular cases of this approach.

4.1. Drag on plants

Wind on plant surface causes local skin friction
and pressure drag. The net drag load on a plant,
or on part of a plant, may be measured in a wind
tunnel with a load cell. Depending on the scale
of interest, the plant or subsets of the plant may
be regarded either as a bluff body surrounded by
air-flow such as an individual leaf, or as a porous
body with through-flow such as a tree crown,
as discussed in Section 4.2 when introducing the
concept of porosity. In the first case a drag load
is commonly expressed as

F =
1

2
ρACD|U − Ẋ|(U − Ẋ), (3)

where the drag factor ACD depends on the ge-
ometry and the Reynolds number. Note that we
shall not separate here the reference area A and
the drag coefficient CD, as only their combined
effect matters. The dependence of the drag coef-
ficient on wind-induced change in plant configu-
ration will be discussed in Section 6. Using equa-
tion (3) with a time varying wind velocity U and

plant velocity Ẋ allows to derive a time vary-
ing load F. Alternatively when using a porous
medium model a local volume drag load may also
be defined as

f =
1

2
ρεcD|U − Ẋ|(U − Ẋ). (4)

In a canopy, the combined drag coefficient εcD

essentially varies with z and may be derived
from the variation of the Reynolds stress εcD =
(u′w′),z/u

2 (Kerzenmacher & Gardiner, 1998).
The drag coefficient cD is found to be of the or-
der of 0.1 for trees. Note that a point load, as
defined by equation (3), may be considered as a
particular volume distributed load given by equa-
tion (4), so that only this case will be mentioned
further.

From this local definition of wind load over the
porous media the modal wind load for mode n is
easily derived by a modal projection integrating
over the whole volume

fn =

∫

f .ϕn dΩ. (5)

Elementary cases of interest are easily recovered
by choosing specific forms of the modal shape:
the net drag upon using a translational mode
ϕ = eX , the moment on root plate with ϕ =
(z/L)eX and the torsional load using ϕ = reθ in
cylindrical coordinates.

4.2. Modal response

The dynamics of a given mode n excited by wind
is then defined by

mq̈+cq̇+kq =

∫

1

2
ρεcD|U− q̇ϕ|(U− q̇ϕ).ϕ dΩ.

(6)
Upon removing all time dependent terms the

static contribution of each mode may thus be de-
rived, and the total static response as well by
superposition. For each mode, damping in still
air and flow-induced damping are also found by
assuming U = 0 or q̇ ≪ |U | respectively. An-
other important case arises when the wind ve-
locity fluctuations are taken into account. The
fluctuations u such that U(t) = U + u(t) are
known only through their spectral characteris-
tics, such as Suu, as described in Section 3. In
that case, the plant velocities are usually con-
sidered to be of smaller amplitude so that the
load does not depend on q̇. When fluctuations
are assumed to be small u2 terms may be ne-
glected versus Uu terms, and the general frame-
work of linear spectral analysis may be applied.



The methodology to derive the spectral charac-
teristics of the response, such as the Power Spec-
tral Density (PSD) of displacement at a given
point, from the spectral characteristics of wind
is then a standard procedure as in the prediction
of turbulence-induced vibrations in hydrodynam-
ics and in wind-engineering. Specific features ex-
ist in the case of wind over plants (Mayer, 1987;
Gardiner, 1995; Baker, 1995). First, the aero-
dynamic admittance is usually close to unity, as
wind load are strongly correlated over a plant.
This results from the comparison of the plant
size, L to the size of eddies that contribute to
the excitation. Second, by contrast to the large
structures of interest in wind engineering, such as
bridges or antennas, damping is high and modes
may be close to each other which may not al-
low standard simplifications in the combination
of modal responses. Finally the large deformabil-
ity of plants causes large amplitudes of motion, so
that non-linear effects due to geometry or contact
with other plants such as crown clashing in trees,
may come into play. In such cases, the equation
of motion may also be solved using modes but
in the time-domain, via a standard procedure in
flow-induced vibrations.

4.3. Propagating load on canopies

As mentioned in Section 3 the low frequency con-
tent of the wind spectra is associated to propa-
gating gusts over a canopy resulting from a mix-
ing layer instability. If one considers the re-
sponse of a given plant, the spectral description
presented above for the modal response is ade-
quate, as propagating gusts are simply seen as
low frequency events. The global response of the
canopy may also be sought, where load varies
both in space and time. The spectral procedure
is still applicable to propagating loads, through
the use of complex correlation functions to de-
rive the modal admittances. Alternatively a sim-
ple model where the load is time-independent in
a moving frame of reference may be used, (Far-
quhar & Eggleton, 2000; Doaré et al., 2004). In
such a frame defined by X = x − Ut the modal
equation for the canopy reads

(mU2 − r)q′′ − cUq′ + kq = f(X) (7)

where primes are derivatives with respect to X.
The dependence in space is then equivalent to the
time dependence of an oscillator: resonance con-
ditions may occur for specific wavelengths of the
gust. Moreover, the motion of the canopy behind
a step gust resembles the evolution of a damped

Figure 3: Honami lock-in, scaled by the reduced
velocity (Py et al., 2006). Top: Experimental
data of the instantaneous velocity magnitude of
plants on an alfalfa field under wind displaying a
wavelength λ. Bottom: Comparison between ex-
perimental data on alfalfa(green zone) and theo-
retical prediction of a wavelength lock-in effect, in
red, using the coupled model. The simple mixing
layer model, in blue, fails to capture this effect.

oscillator, where the time variable is replaced by
−X. Non-linear effects due the interactions be-
tween plants are easily taken into account, see
Doaré et al. (2004).

5. FULLY COUPLED MODELS OF
WIND-PLANT INTERACTIONS

5.1. Honami lock-in: a Reduced Velocity
effect

As described above a mixing layer instability de-
velops above a canopy, creating large scale coher-
ent fluctuations. The most amplified wavelength
is classically derived by a linear temporal stabil-
ity analysis of the inflectional velocity profile and
scales with the mixing layer thickness. A more re-
fined linear stability analysis is possible including
both the flow and the flexible canopy, as in the re-
cent study of Py et al. (2006). In such a model,
the drag resulting from flow fluctuation affects
the canopy dynamics and is simultaneously in-
corporated in the linearized momentum equation.
The temporal stability analysis associated with
these coupled equations shows a surprising lock-
in feature in a specific range of flow velocities:
the wavelength of the instability no longer scales
with the mixing layer thickness, Figure 3. This
range is defined by a reduced velocity UR of or-
der unity. The wavelength then scales with UR,



Figure 4: Reconfiguration: variation of the drag
factor with the Cauchy number. Blue line: model
of a cylinder mounted on a rotationnal spring.
(+) maple tree crown, (*) giant reed, (o) tulip
tree leaf, � flexible sheet. See text for reference.

as the frequency of the instability locks on the
frequency of the canopy. Experimental data of
honamis on wheat fields and alfalfa fields confirm
this effect (Py et al., 2006).

5.2. Drag reduction: a Cauchy number ef-
fect

The preceding lock-in phenomenon is linear by
nature. Coupling also arises through nonlinear-
ities, when the body shape change needs to be
of order unity to affect the wind load. The drag
induced by wind has here been assumed to vary
as F = ρU2ACD/2. It has often been reported
that the U2 variation of drag did not apply for
plants. This has been expressed in terms of a
”Vogel exponent” noted b such that the depen-
dence of drag load with velocity scales as U2+b.
A value of b = −1 is not uncommon, so that
the drag load increases linearly with the velocity.
Some Reynolds number effects may be the cause
for the smallest plant components, but most ob-
servations relate this reduction to significant de-
formations of the plant. Such shape change may
take different forms, from a simple pronounced
bending to wrapping, and they fall under the
generic name of reconfiguration (Vogel, 1989). It
is an essential mechanism by which vegetation
reduce stress induced by external flow, in air or
water, see Harder et al. (2004). According to
the dimensional analysis it is expected to depend
on the Cauchy number, which controls the shape
changes of the plant due to flow. For a non-
porous body, as defined in Section 4, flow-induced

deformation may affect drag through two distinct
mechanisms. First, as noted by most authors,
deformation induces a reduction in the effective
cross flow area, A, which does directly reduce the
total drag load. Second the deformed shape may
be more streamlined so that the pressure recov-
ery in its wake is improved, also reducing drag.
These combined effects are fully discussed by Al-
ben et al. (2004) for the model case of a thread
in a soap film, a 2D model for fluid flow, and
by Vollsinger et al. (2005) for a tree crown in
a wind tunnel: they are found to be of similar
magnitude. Figure 4 shows typical experimental
data of the evolution of the drag reduction ratio
ACD/(ACD)0 with Cauchy number, see (de Lan-
gre, 2008) for details on references. All these
evolutions display a strong decrease of drag for
a Cauchy number of order unity.

As an elementary model of this effect one
may consider a rigid cylinder of length L and
diameter D mounted on a rotational spring of
stiffness C, which allows deformation by bend-
ing in the flow direction, Figure 4. Assum-
ing that the drag depends on the velocity nor-
mal to the cylinder, the drag reduction ratio
varies as ACD/(ACD)0 = cos2 θ, where θ is the
angle of inclination. Using the equilibrium of
moments between drag and rotational stiffness
yields CY = ρU2D/C = 4θ/ cos3 θ. The rela-
tion between drag and Cauchy number using this
model is shown in Figure 4. It is found to qual-
itatively represent the reconfiguration effect ob-
served in the experimental data.

6. CONCLUDING REMARKS

Though the effects of wind on plants are man-
ifold, even in the restricted context of mechan-
ics, several common features may be identified.
First, the fluid mechanics of wind in the pres-
ence of plant and the solid mechanics of plants
are themselves quite specific: wind turbulence is
different from its counterpart in classical bound-
ary layers, and plant structural dynamics is dif-
ferent from its counterpart in man-made struc-
tures. Second, the interactions that cause motion
of plants or of part of plants are caused by mecha-
nisms that are well-known in flow-induced vibra-
tion, but several important specific features raise
challenging questions: the range of length scales
in a given medium (from leaves to canopies), the
complex three-dimensional geometries (from in-
dividual plant architecture to seed dispersal in
a rainforest) and the magnitude of deformation
(from fluttering leaf to streamlined tree crown).



Other important effect of wind of plants must be
mentionned, see in (de Langre, 2008). First, wind
strongly affects photosynthesis, by its effects on
the thermal boundaray layer, but also by the role
of leaf motion inligh perception. Wind is also an
essential ingredient of several biological functions
through its role in seed dispersal, windthrow and
thigmomorphogenesis. Finally, wind affects the
interactions between plants and animals, such as
insect communication
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