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ABSTRACT

The study deals with numerical approximation of
a 2D aeroelastic problem. A fully coupled formu-
lation of flow over a freely vibrating airfoil with
two degrees of freedom for rotation and transla-
tion is considered. The flow is described by the
incompressible Navier-Stokes equations written
in Arbitrary Lagrangian-Eulerian (ALE) form or
by the Reynolds averaged Navier-Stokes system.
The flow is solved by the stabilized finite ele-
ment method. The developed method is verified by
experimental data and the numerical results ob-
tained for laminar and turbulent models are com-
pared.

1. INTRODUCTION

In many technical disciplines the interaction of
fluid flow and an vibrating structure plays an im-
portant role. [see, e.g., Dowell (1995)]. During
last years, significant advances have been made
in the development of computational methods for
simulation of the fluid-structure interaction, see,
e.g., Bathe (2007). In the present study the main
attention is paid to the comparison of numerical
simulations of free airfoil NACA0012 vibrations
with large amplitudes in turbulent and laminar
flows.
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2. MATHEMATICAL MODELS

The mathematical analysis consists of the flow
and structure models and the coupling condi-
tions. Here we study the interaction of fluid and a
flexibly supported airfoil, which can be vertically
displaced and rotated around its elastic axis. The
character of the flow depends on the magnitude
of the Reynolds number: for a sufficiently small
Reynolds number the flow is laminar but with
increasing Reynolds numbers it becomes turbu-
lent. Here, the two different flow models are con-
sidered. The motion of the airfoil is described
by the two nonlinear equations of motion. The
flow and structure models are then coupled by
the kinematic and dynamic conditions.

2.1. Laminar model

First, we introduce the flow model for the lami-
nar case, which is described by the incompressible
Navier-Stokes equations. In order to treat the do-
main motion due to the structural deformations
the ALE method is applied. The Navier-Stokes
system written in ALE form then reads

DAvi

Dt
+ (v − wD) · ∇vi +

∂p

∂xi

=

2∑

j=1

∂

∂xj

(
ν
( ∂vi
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∂vj
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)
in Ωt, (1)

∇ · v = 0 in Ωt,

where DA

Dt
denotes the ALE derivative, wD de-

notes the ALE domain velocity, v = (v1, v2)
T



is the velocity vector, p is the kinematic pres-
sure, and ν is the kinematic viscosity. The sym-
bol At denotes a regular one-to-one Arbitrary
Lagrangian-Eulerian (ALE) mapping of the ref-
erence configuration Ω0 onto the current config-
uration Ωt for any time instant t ∈ [0, T ]. The
system of equations (1) is equipped with suitable
boundary and initial conditions, cf. Sváček and
Feistauer (2004). On the moving part of bound-
ary (airfoil surface ΓWt) the kinematic boundary
condition is prescribed, i.e. v = wD on ΓWt.

Figure 1: The elastic support of the airfoil on trans-
lational and rotational springs.

2.2. Turbulence model

In the case of high Reynolds numbers the flow
becomes turbulent. In order to numerically ap-
proximate the turbulent flow one possibility is to
model only mean parts of aerodynamical quanti-
ties. The influence of fluctuating parts is mod-
elled with the aid of the Boussinesq assumption.
Starting from the Navier-Stokes equations, the
velocity v is decomposed into the mean part V

and the fluctuating part v′ , i.e. v = V+v′ with
its components vi = Vi + v′i . Similarly, the kine-
matic pressure p is decomposed into the mean
part P and the fluctuating part p′, i.e. p = P +p′.
The Reynolds Averaged Navier-Stokes (RANS)
equations read

DAtvi

Dt
+ ((v − wD) · ∇)vi +

∂p

∂xi

−
∂

∂xj

(
(ν + νT )

( ∂vi

∂xj
+

∂vj

∂xi

)
= 0 in Ωt, (2)

∇ · v = 0 in Ωt,

where νT is the turbulent viscosity, which re-
quires further modelling. The system of equa-
tions (1) is equipped with suitable boundary and
initial conditions, cf. Sváček, P. et al. (2005).

The turbulent viscosity νT is computed with
the aid of the Spalart-Allmaras model, repre-
sented by the equation

DAtν̃

Dt
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,

for an additional quantity ν̃. Here the functions
G(ν̃) and Y (ν̃) are functions of the tensor (ωij)ij
of rotation of the mean velocity and of the wall
distance y. Here, the components of the rotation

tensor are defined by ωij = 1

2

(
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)
. The

turbulent viscosity νT is defined by

νT = ν̃
χ3

χ3 + c3
v
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ν
. (4)

We use the following relations (see also Wilcox
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, S̃ = S +
ν̃

κ2y2
fv2

,

and y denotes the distance from a wall. The fol-
lowing choice of constants is used: cb1 = 0.1355,
cb2 = 0.622, β = 2

3
, cv = 7.1, cw2

= 0.3,

cw3
= 2.0, κ = 0.41, cw1

= cb1/κ
2 + (1 + cb2)/β.

2.3. Structural model

Here, a solid flexibly supported airfoil is con-
sidered. The airfoil can be vertically displaced
and rotated. Fig. 1 shows the elastic support of
the airfoil on translational and rotational springs.
The pressure and viscous forces acting on the vi-
brating airfoil immersed in flow result in the lift
force L(t) and the torsional moment M(t). The
governing nonlinear equations are written in the
form (see Sváček et al. (2007))

mḧ + Sα α̈ cos α − Sαα̇2 sinα + khhh = −L(t),

Sαḧ cos α + Iαα̈ + kααα = M(t),

where khh and kαα are the bending stiffness and
torsional stiffness, respectively, m is the mass of
the airfoil, Sα is the static moment around the
elastic axis EO and Iα is the inertia moment
around EO.
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Figure 2: Distribution of the pressure coefficient cp

on the surface of the airfoil NACL 0012 obtained from
the numerical simulations by the turbulence model
(stationary solution): computed values, ◦; experimen-
tal data, — —.

3. NUMERICAL APPROXIMATION

In order to solve the problem numerically, we
first start with the time discretization of the flow
model. The ALE derivative is approximated by a
two step backward difference formula. The prob-
lem discretized in time is solved by the finite ele-
ment method. The construction of the finite ele-
ment space is based on a triangulation of a polyg-
onal approximation of the computational domain
(denoted again by Ω).

3.1. Flow problem

It is well-known that FEM can be applied with
success to a large variety of problems. However,
in the finite element solution of incompressible
Navier-Stokes equations several important obsta-
cles need to be overcome. First, it is necessary
to take into account that the finite element ve-
locity/pressure pair has to be suitably chosen
in order to satisfy the Babuška-Breezi condition,
which guarantees the stability of the scheme –
see, e.g., Girault and Raviart (1986). In prac-
tical computations we assume that the domain
Ω is a polygonal approximation of the region oc-
cupied by the fluid at time t and the finite ele-
ment spaces are defined over a triangulation T△

of the domain Ω, formed by a finite number of
closed triangles K ∈ T△. In our computations,
the well-known Taylor-Hood P2/P1 conforming
elements are used for the velocity/pressure ap-
proximation. This means that the finite element
approximation of the pressure p△ is a piecewise

linear function and the approximation of the ve-
locity v△ is a piecewise quadratic vector-valued
function on each element K ∈ T△.
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Figure 3: Comparison of the experimental lift coef-
ficient and the lift coefficient computed by the finite
element method (turbulence model): computed val-
ues, ◦; experimental data, — —.

Furthermore, the standard Galerkin discretiza-
tion may produce approximate solutions suffering
from spurious oscillations for high Reynolds num-
bers. In order to avoid this drawback, the stabi-
lization via streamline-diffusion/Petrov-Galerkin
technique is applied [see, e.g., Gelhard et al.
(2005), Sváček et al. (2007)]. Moreover, it is
necessary to design carefully the computational
mesh, using adaptive grid refinement in order to
allow an accurate resolution of time oscillating
thin boundary layers, wakes and vortices. In our
case we use the anisotropic mesh adaptation tech-
nique by Doleǰśı (2001) for the construction and
adaptive refinement of the mesh.

3.2. Spalart-Allmaras model

In order to approximate the problem (3) we use
the finite element space of the piecewise linear
functions. The Galerkin approximations do not
guarantee the monotonicity of the solution, but
the function ν̃ needs to preserve positivity. The
ELS/SUNG stabilization introduced in Sváček
et al. (2007) provides enough streamline diffusion
to stabilize the scheme, but still local oscillations
leading to possible negative values of the variable
ν̃ can appear. The additional artificial viscosity
stabilizing procedure based on crosswind diffu-
sion is introduced, cf. Codina (1993).
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Figure 4: The distribution of the pressure mean
coefficient cp on the airfoil surface (turbulence
model,vibrating airfoil NACA 0012): computed val-
ues, ◦; experimental data, — —.
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Figure 5: The distribution of the real part c′
p

of the
pressure coefficient on the airfoil surface (turbulence
model,vibrating airfoil NACA 0012): computed val-
ues, ◦; experimental data, — —.
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Figure 6: The distribution of the imaginary part c′′
p

of the pressure coefficient on the airfoil surface (turbu-
lence model,vibrating airfoil NACA 0012): computed
values, ◦; experimental data, — —.

4. NUMERICAL RESULTS

First, the validation of the turbulence model was
performed for flow over NACA 0012 airfoil. The
approximation of the stationary turbulent flow
was computed and the distribution of the pres-
sure coefficient cp = (p − p∞)/(1/2ρU2

∞) over
the surface of the airfoil was compared with the
mean values from Benetka and Horáček (2003),
see Fig. 2. The lift coefficient in dependence on
the angle of attack is compared in Fig. 3 with
the data of Sheldahl and Klimas (1981). Further,
the numerical approximation of flow over airfoil
NACA 0012 for prescribed harmonic airfoil vi-
brations was compared to the measurement, see
Benetka and Horáček (2003). The comparison is
shown in Figs. 4-6.

The turbulent and laminar approaches were
compared on the aeroelastic computations for the
NACA 0012 airfoil with the parameters as in
Sváček et al. (2007). The results are shown in
Figs. 7– 12 for three oncoming airflow velocities.
The numerical simulations for the turbulent flow
were performed on anisotropically refined mesh
with 27376 elements and 13850 vertices. The
number of total unknowns was approximately
120000. The mesh was refined in the boundary
layer region in order to capture both the laminar,
logarithmic and the turbulent sublayers (no wall
functions were used). The laminar flow was ap-
proximated with the aid of the mesh with 21994
elements and 11169 vertices (total number of un-
knowns was about 100000). The same time step
values were chosen for both the laminar and tur-
bulent computations (∆tU∞/L∞ = 0.0025).

5. CONCLUSIONS

The method developed for the numerical simu-
lation of airfoil aeroelastic behaviour in turbu-
lent flow was successfully validated by experi-
mental data known for stationary and fixed pro-
file NACA 0012 and for prescribed torsional air-
foil vibration. For low oncoming airflow veloci-
ties, the vibrations are damped by aerodynamic
forces and the system is stable. Small sustained
airfoil vibrations for the laminar flow are caused
by vortices periodically shedding from the profile,
in contrast to the turbulent flow, where the vi-
bration level decay is much stronger (see Figs. 7
and 8). For higher flow velocities (see Figs. 9-
12) near the instability threshold the tendencies
in the displacements of the airfoil in time domain
are similar for turbulent and laminar flows. The
system becomes unstable by divergence for trans-



lation at about 37.7 m/s, followed by flutter for
rotation above the flow velocity 42.4 m/s (see
Sváček et al. (2007)).
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Figure 7: Aeroelastic response for laminar model and
U∞ = 30 m s−1
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Figure 8: Aeroelastic response for turbulence model
and U∞ = 30 m s−1
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Figure 9: Aeroelastic response for laminar model and
U∞ = 38 m s−1

t [s]0 0.2 0.4 0.6 0.8 1

0

2

α

U =∞ 38 m/s

t [s]

h
[m

m
]

0 0.2 0.4 0.6 0.8 1
0

10

20

U =∞ 38 m/s

Figure 10: Aeroelastic response for turbulence model
and U∞ = 38 m s−1
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Figure 11: Aeroelastic response for laminar model
and U∞ = 40 m s−1
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Figure 12: Aeroelastic response for turbulence model
and U∞ = 40 m s−1


