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ABSTRACT

A nonlinear mathematical model is developed
here to analyze the passive mechanism of the in-
ner ear, the cochlea. A strong interaction between
the flow in the scala vestibuli and in the scala tim-
pani and the basilar membrane is allowed by the
model. The resonance frequencies and resonance
wave numbers of the cochlea are found by solv-
ing an eigenvalues problem resulting from a lin-
ear version of the model. In the nonlinear version
of the model, it was possible to eliminate explic-
itly the potential flow from the dynamic equation
in order to obtain an integro-differential equa-
tion involving only the displacement of the basi-
lar membrane. It is shown that the cochlea has a
discrete resonance frequencies and discrete reso-
nance wave numbers. One of the sets of the res-
onance frequencies is a double resonance formed
by the coalescence of two resonance wave num-
bers. It is also shown that the basilar membrane
no longer moves if the stimulus frequency exceeds
some critical value highlighting the existence of
the upper limit of hearing. The relationship be-
tween the high roll-off frequency and the stiff-
ness of the basilar membrane is established and
is found to be a parabolic one. Moreover, the up-
per limit of hearing increases with the increase
of Young’s modulus of the basilar membrane. It
is found that the amplitude of basilar membrane
oscillation at low frequency stimuli is higher than
its counterpart at high frequencies. The apex of
the basilar membrane is more excited by low fre-
quencies than its base. And conversely, the base
is more excited by high frequencies than the apex,
in spite of the fact that Young’s modulus of the
basilar membrane used in the model is constant

1. INTRODUCTION

The ear is a complex and very sensitive organ of
the living body. One of the major tasks of the ear
is to detect and analyze noises by transduction.
The ear is divided into three different parts, the
outer ear, the middle ear and the inner ear. In

this work we shall study the mechanical behav-
ior of the inner ear (the cochlea). The cochlea is
a spiral, hollow, conical chamber made of bone.
Structures include the scala vestibuli (contain-
ing perilymph) lies superior to the cochlea duct
and abuts the oval window. The scala tympani
(containing perilymph ), which lies inferior to the
scala media and terminates at the round win-
dow. The scala media (containing endolymph)
is the membranous cochlea duct containing the
organ of Corti. The helicotrema is the location
where the scala tympani and the scala vestibuli
merge. Reissner’s membrane separates the scala
vestibuli from the scala media. The basilar mem-
brane separates the scala media from the scala
tympani. The Organ of Corti is a cellular layer
on the basilar membrane. It is lined with sen-
sory cells topped with hair-like structures called
stereo cilia. Humans can hear sound waves with
frequencies between 20Hz and 20,000 Hz. The
three bones in the ear (malleus, incus, stapes)
transfer the vibrations, induced by an incoming
acoustic wave, to the cochlea. When the hair cells
are excited by vibrations, a nerve impulse is gen-
erated in the auditory nerve. These impulses are
then sent to the brain. The inner ear may behave
actively and passively in response to an incoming
acoustic wave and is even able to generate spon-
taneous otoacoustic emissions (see De Boer et al.
1999, 2006). Understanding the passive mecha-
nism of the cochlea is a necessary step toward a
full understanding of the cochlea mechanism. In
this paper we shall focus only on the passive me-
chanics of the inner ear. Models of the cochlea
have been suggested by many authors. For in-
stance, Nobili and Mammano (1993) have devel-
oped a linear model based on the Green function
technique. De Beor (2000) measured the mechan-
ical response of guinea-pig cochlea to broad-band
noise, after which the measured results were an-
alyzed using a linear model established by the
author herself. She found that the cochlea could
have passive as well as active mechanisms. Nor-
man Sieroka et al. (2006) extended the model
proposed by De Beor (1999), with the articles



referenced in their bibliography, to include long
and short-wave approximations. In these mod-
els, a linearized Euler equation was solved to ac-
count for the dynamics of the fluid. A spring-like
model has been proposed to account for the dy-
namics of the basilar membrane. In those mod-
els, the fluid pressure to the membrane velocity
ratio has been assumed to be equal to the mem-
brane impedance and the resonanace frequency
of the cochlea all of which depends exponentially
on the axis of the cochlea. The pressure in the
fluid is obtained by solving Poisson’s equation in
a stationary domain, wherease the Fourier trans-
form is performed in an axial direction, leading
to the two widely-known long-and short-wave ap-
proximations. In our model the flow is potential
but in a time dependent domain and the pressure
is obtained by the unsteady Bernoulli equation.
Therefore, the pressure is a nonlinear function of
velocity, contrary to the commonly admitted lin-
ear pressure-velocity relationship in the cochlea
models. In order to take account of pending mo-
ments and flexural moments applied by the flow
to the basilar membrane, we shall describe the
dynamics of the basilar membrane by an elastic
plan-shell equation. The kinematic conditions,
namely the continuity of the velocity field, at the
interface between the fluid and the shell are held
without approximation. In that way a strong in-
teraction between the fluid flow and the basilar
membrane is allowed without introducing an ar-
tificial impedance assumption. Thus, our formu-
lation leads to a mathematical model which is, to
our best knowledge, the only one able to predict
the high roll-off frequency. In order to simplify
the mathematical formulation of the mechanical
behavior of the cochlea, we shall regard it as a
plane channel instead of a spiraled conical cham-
ber, in the way it is schematically depicted in
figure 1. The basilar membrane, Reissner’s mem-
brane, the scala media and the organ of Corti are
regarded as an elastic shell. The fluid in the scala
vestibuli channel and scala timpani channel are
assumed to be non-viscous and the flow is irrota-
tional.

Resonance frequencies and reso-
nance wave numbers

The linear basic equation is obtained in the fol-
lowing way: the non linear terms are neglected
in the governing equations, the terms involving
the membrane displacement are eliminated by
cross differentiation, a potential flow difference
Φ = Φ1 − Φ2 is introduced, where Φ1 and Φ2
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Figure 1: Diagram of the cochlea

are the potential flow in the scala vestibuli and
in the scala timpani, which yields the following
linear equation

[
∂2

∂t2
+ D(

∂2

∂x2
− β2)2]

∂2φ

∂x2
= 2ρ

c

b

∂2φ

∂t2
(1)

in this equation, ρ is the fluid mass density to
solid mass density ratio. The dimensionless stiff-
ness is

D =
ε3E

12(1 − ν2)ρsh4ω2
0

, β =
π

2c
(2)

The boundary conditions associated with the
precedent equation are

∂φ

∂x
= V,

∂2φ

∂x2
=

∂3φ

∂x3
= 0 ; x = 0

φ = 0,
∂2φ

∂x2
=

∂3φ

∂x3
= 0 ; x = L (3)

To find the resonance frequency and the reso-
nance wave number, a solution is searched for in
the form of a normal mode, namely

φ = φ̃eiωt+ikx (4)

substituting φ in equation (1) leads to the dis-
persion equation, so that

D(k2 + β2)2k2 − (k2 + 2ρ
c

b
)ω2 = 0 (5)

The frequency and the wave number in the dis-
persion equation are not arbitrary. Rather, the
boundary condition leads to a set of discrete fre-
quencies, ωm, and discrete wave numbers, km

j ,
where m = 1, 2, 3, · · · ,∞ and j = 1, 2, · · · , 6.
This is so because the dispersion equation has
six roots for a given ωm. Set (ωm,km

j ) is the res-
onance frequency and resonance wave numbers



of the cochlea. Figure 2 shows the discrete res-
onance numbers of the system. In this figure
the resonance complex wave numbers are plot-
ted versus the resonance frequencies. Figure 2a
shows the real part and the imaginary part of
two resonance complex wave numbers versus real
frequencies. Those complex wave numbers be-
come pure imaginary numbers at high frequency.
At some frequency, those modes coalesce to form
a second-order resonance; i. e., a more power-
ful resonance. The complex wave number where
the coalescence takes place is marked by an ar-
row in the figure. In figure 2b two other complex
resonance wave numbers are plotted versus the
real frequencies. Those latter modes are the com-
plex conjugate of former modes shown in figure
2a. Figure 2c Shows two pure imaginary wave
numbers versus real frequencies. The real part of
the complex number is the physical wave num-
ber and the imaginary part is the spatial ampli-
fication/damping rate. The frequency for which
the coalescence occurs depends on the rheologi-
cal parameters of the cochlea. In figure 2d, the
variation of the double resonance frequency ver-
sus the membrane to fluid mass density ratio and
for some values of aspect ratio β, are shown. For
a thin basilar membrane the coalescence occurs
at high frequencies. The group velocity of the
wave propagating in the cochlea can be obtained
from the dispersion relation, equation (5). That
is, Vg = −dω

dk
. It is found that, outside a small

range of low frequency, the group velocity is an
increasing function of frequency, ω, which is in
qualitative agreement with the results obtained
by solving the nonlinear equation found in the
next section.

Nonlinear displacement equa-
tions

An integro-differential equation is established in-
volving only the displacement of the basilar mem-
brane to describe the dynamics of the cochlea.
For it is shown that the two flow potentials Φ1

and Φ2 are such that

Φ1 =

∫ L

x
[

1

w(z) − γ

∫ z

0

∂w(α)

∂t
dα +

γV

w(z) − γ
]dz

Φ2 =

∫ L

x
[

1

w(z) + γ

∫ z

0

∂w(α)

∂t
dα +

γV

w(z) + γ
]dz

For simplification of terms we have introduced
γ = bπ

2c
. Recall that the previous solution in-

volves dimensionless variables where h is the unit
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Figure 2: Sub-figures (a), (b) and (c) show the
complex spatial eigenvalues versus the temporal
eigenvalues; i. e., resonance wave numbers versus
resonance frequencies. Sub-figure (d) shows the
frequency where the coalescence of two spatial
eigenvalues occurs, versus the mass density ratio
ρ and for some β shape factor values. From the
top curve to the bottom curve, β = 20, β = 15,
β = 10.



of length. The arbitrary constants in both poten-
tials are such that Φ1 = Φ2 = 0 at x = L. Us-
ing the Bernoulli equation to compute the pres-
sure acting on the basilar membrane, which is
viewed as a flat shell, the dynamic equation of
the cochlea is written involving the only basilar
membrane displacement. That is,

∂2w

∂t2
+ D

∂4w

∂x4
− 2Dβ2 ∂2w

∂x2
+ Dβ4w =

πρ

2

∫ L

x
[−

∂w(z)

∂t
(

1

(w(z) − γ)2
−

1

(w(z) + γ)2
)

(

∫ z

0

∂w(α)

∂t
dα + γV )]dz

πρ

2

∫ L

x
[(

1

w(z) − γ
−

1

w(z) + γ
)

(

∫ z

0

∂2w(α)

∂t2
dα + γ

∂V

∂t
)]dz

+
πρ

4
(

1

(w(x) − γ)2
−

1

(w(x) + γ)2
)[

(

∫ x

0

∂w(α)

∂t
dα)2 + (γV )2] (6)

The boundary conditions associated to the prece-
dent equation are

w =
∂w

∂x
= 0 , x = 0

w =
∂w

∂x
= 0 , x = L (7)

Small displacement of the basilar

membrane

The nonlinear equation (6) involves double in-
tegrations over the axial distance; consequently,
it is time consuming in numerical simulation.
Therefore, it is desirable to replace it by a more
tractable equation without losing the precision
desired in the results. We have at our disposal the
fact that the membrane displacement is small in
comparison with the size of the channels. Thus,
the fraction is expanded involving w in equation
(6) as follows

(
1

(w − γ)2
−

1

(w + γ)2
) ≈

4w

γ3
+ O(w2)

(
1

(w − γ)
−

1

(w + γ)
) ≈ −

2

γ
+ O(w2) (8)

then by neglecting all the terms involving a sec-
ond or higher order in w, the shell equation be-

comes

∂2w

∂t2
+ D

∂4w

∂x4
− 2Dβ2 ∂2w

∂x2
+ Dβ4w =

−πρ(L − x)
∂V

∂t
+

πρ

γ
w(x)V 2

−
πρ

γ

∫ L

x
(

∫ z

0

∂2w(α)

∂t2
dα)dz (9)

The boundary conditions, given by equation (7)
remain unchanged. Equations (6) and (9) are
solved by a spectral method. In this method only
two boundary conditions are enforced; i.e., w = 0
at x = 0 and x = L. The numerical result may be
improved by an expansion taking into account all
the boundary conditions described by equation
(7). However, because the basilar membrane is
not perfectly rigid, no one really knows what the
derivative of w at x = 0 and at x = L is, there-
fore, it is preferable to have a tractable expansion
and leave the mathematical rigor for another op-
portunity. Thus, a solution of equation (6)-(9) is
searched for in the following series

w =
N∑

j=1

Aj(t) sin(
jπx

L
) (10)

Using the orthogonality of the trigonometric
functions, equations (6) and (9) are transformed
to a second order-system of differential equations
and then solved by a fourth-order Runge–Kutta
method. It has been found that the difference
between the solution of equations (6) and (9)
are less than 3% of the amplitude and insignifi-
cant difference in the phase for high frequencies,
and an insignificant difference, in both amplitude
and phase, has been found for low frequencies.
From now on, equation (9) will be used to give
insight into the membrane dynamics by an ex-
tensive computation.

Nonlinear results

In order to describe the reaction of the basi-
lar membrane to an incoming monochromatic
acoustic wave, the basilar membrane is consid-
ered at rest at t = 0 and the incoming acous-
tic wave forces the membrane of the oval win-
dow to move with a velocity V = A sin(ωwt),
then, equation (9) is solved. The amplitude of
the velocity of the membrane of the oval win-
dow, A, is connected to the pressure of the acous-
tic wave by the relation pa ≈ 1

2
ρairA

2 (stag-
nation pressure). The frequency ωw is the fre-
quency of the acoustic wave. From now on,



one can examine the following mean quantity

< w(x, t), w(x, t >=
∫ L
0

w(x, t)2dx. That is the
mean square membrane displacement. Plotting
precedent quantity versus the external param-
eters of the system leads to a huge number of
curves and figures. To avoid such a bad presen-
tation only the maximum value reached by the
precedent mean quantities will be plotted in a
given time range. Thus, the dynamic equation is
solved in the range 0 ≤ t ≤ tmax, where tmax is
large enough to allow the saturation of the am-
plitude of the displacement where a fully nonlin-
ear regime is established. Then, the several ob-
tained maximum versus the external parameters
are plotted. Thus, for each value of the external
parameters, the nonlinear system is solved until
saturation, the maximum mean value is picked
up and stored. The operation is repeated for the
the desired value of the external parameters. The
high roll-off frequency is an important charac-
teristic of the cochlea because it determines the
upper limit of the hearing. From a mechanical
point of view, the high roll-off frequency occurs
when the basilar membrane no longer moves un-
der the action of a stimulus having a frequency
above some critical value. In order to know if the
upper hearing limit is a passive character of the
cochlea or not, one can plot the maximum mean
square displacement of the basilar membrane ver-
sus the stimulus frequency. The maximum mean
square displacement is a positive quantity: it is
clear that < w,w >= 0 implies w = 0 and vice-
versa. In figure 3, the maximum mean square
displacement is plotted versus the stimulus fre-
quency for some values of rheological parameter
D. In order to obtain the curves in this figure,
the nonlinear system has been solved more than
104 times, which is very difficult to do without
the approximation done in the precedent section.

As long as the stimulus frequency is below
the critical frequency, the maximum mean square
displacement of the basilar membrane varies
quasi periodically with the stimulus frequency,
with a small increase in the period of oscilla-
tion with an increase in the stimulus frequency.
When the stimulus frequency reaches the critical
frequency, the maximum mean square displace-
ment goes to zero; i. e., the basilar membrane
stops moving. Therefore, the cochlea no longer
catches the acoustic wave in perfect agreement
with the observed daily behavior of the cochlea in
living bodies. Figure 3 shows that the high roll-
off frequency depends on the rheological parame-
ters of the cochlea via D which involve thickness,
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Figure 3: Mean displacement of the basilar mem-
brane versus the stimulus frequencies, ωw, for
some values of D. The figures show that the
mean displacement is no longer significant when
the stimulus frequency exceeds the high roll-off
frequency. (a): D = 10, (b): D = 100; (c):
D = 200, (d): D = 200, ρ = 35, β = 7, L = 6,
A = 0.05, the velocity of the oval window mem-
brane V = A sin(ωwt).
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Figure 4: Relative high roll-off frequency versus
relative stiffness of the basilar membrane

Young’s modulus, Poisson’s coefficient and the
mass density of the basilar membrane the width,
h, of scala vestibuli and scala timpani channels
and the time Scale ω−1

0 , (see equation 2). The
critical frequency of the upper hearing limit de-
termined here is a dimensionless frequency. One
has to multiply the dimensionless frequency by
ω0 to find the real limit. To compute ω0 it is
necessary to know the exact value of the rheo-
logical parameters. It is worthy to note that an
inverse method may be used to compute the rheo-
logical parameters value. For if we know the high
roll-off frequency we can compute ω0. The knowl-
edge of which allows us to compute the value of
one rheological parameter via equation (2) if all
the other parameters are known. In figure 3 the
maximum of the maximum of the mean displace-
ment is observed. The maximum of the max-
imum occurs at some stimulus frequency for a
given D. Increasing D shifts the maximum of
the maximum toward the high frequency. Thus,
the basilar membrane is more sensitive to some
frequencies than others. This sensitivity depends
on the rheological parameters which may indicate
place to frequency dependence. Figure 4 shows
the relative high roll-off frequency versus the di-
mensionless stiffness of the basilar membrane D.
The frequency and the stiffness labeled + is ob-
tained by extrapolation of the results shown in
figure 3. Then the parabolic relation between
the high roll-off frequency, ωf , and the stiffness
is postulated, namely

D = aω2
r + bωr + c (11)

then the collocation method is used to obtain
the numerical values of the constants a, b and
c. Thus, we found that a = 0.0003527, b =
0.003135, c = −0.72492. The curve in figure 4
fits those numerical values.
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