
Flow Induced Vibration, Zolotarev & Horacek eds. Institute of Thermomechanics, Prague, 2008

USEFULNESS OF SENSITIVITY EQUATION METHOD IN FINDING
INTER-CYLINDER COUPLINGS AND OVERVIEW OF ITS OTHER

INTERESTS

R. Watteaux & N. Mureithi
BWC/AECL/NSERC Chair of Fluid-Structure Interaction

Department of Mechanical Engineering, École Polytechnique de Montréal
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ABSTRACT
Flow-induced vibration of tube bundles remains
an important problem in the nuclear industry.
For several decades now, scientists have worked
on developing a good theory which models well
the behaviour of cylinders subjected to cross-flow.
In all cases, understanding the influence of each
tube on its neighbours is of primary importance.
Given the difficulty and cost of measuring the
coupling effects, we investigate numerical simu-
lations as an alternative.
Sensitivity analysis is a method describing the in-
fluence of a parameter on a flow. It entails solv-
ing partial differential equations for the flow sen-
sitivities which are obtained by differentiation of
the Navier-Stokes equations. This paper investi-
gates the potential of the SEM as a tool for de-
termining the intercylinder coupling effects. The
latter are quantified by the derivatives of lift and
drag coefficients of all tubes with respect to the
coordinates of the reference tube’s center. The
paper also presents SEM as a tool to obtain quick
estimates of the flow on nearby geometry and to
determine key parameters for design.

INTRODUCTION

Sensitivity analysis (Turgeon, 2001) describes the
influence of a parameter on the flow. One ap-
proach to sensitivity analysis called continuous
SEM involves solving partial differential equa-
tions for the flow sensitivities. The sensitivity
equations are obtained by differentiation of the
Navier-Stokes equations and solved by a Finite
Element Method.

In this work, derivatives of the force coefficients
have been computed for a rotated-triangle tube

bundle subjected to a single-phase low Reynolds
number flow. The numerical results show the ex-
pected symmetrical and anti-symmetrical behav-
iors of the flow that occur in this configuration.

Two other advantages of the Sensitivity Equa-
tion Method are shown here: the evaluation of
flows on nearby geometries which gives, with only
one numerical simulation, the flow for any nearby
geometrical cylinder configurations and thus all
force coefficients of the new configurations; and
the determination of the key parameters for de-
sign.

The paper begins with a background in the-
ory and the description of the problem studied.
The steady-state governing equations for lami-
nar incompressible fluids are then presented and
the sensitivity equations derived. Calculations of
force coefficients and their derivatives for a shape
parameter follow. The numerical results are then
presented. The other uses of SEM are then pre-
sented.

1. THEORETICAL BACKGROUND

Several theories for the prediction of fluidelas-
tic instability in tube bundles have been pro-
posed in the last twenty five years. Some are al-
most purely analytical requiring few experimen-
tal data. Others, less analytical, require measure-
ment of a large number of coefficients. The quasi-
static/quasi-steady model developed by (Price
and Paidoussis, 1983) presents a good compro-
mise by introducing a simplified analytical model
for the velocity effects. For this reason only dis-
placement dependent forces need to be deter-
mined experimentally.



The mathematical model is briefly explained
as follows. The governing equations of motion,
for a triangular tube bundle (Fig 1.) subjected
to a cross-flow, is :

[M ]Ẍ + [C]Ẋ + [K]X = F (1)

where X = (xC , yC , ....y6) is the cylinder dis-
placement vector;[M ],[C] and [K] are respec-
tively the mechanical mass, damping and stiff-
ness matrices and F = (FxC , FyC , . . . , Fx6, Fy6)
the fluid force vector.

The fluid forces on the cylinder C may be
written as :{

FxC

FyC

}
=

1
2
ρU2

∞lD

[{
CDC

CLC

}
(1− 2 ẋC D/UG)

+
{

CLC

CDC

}
˙yC D/UG

]
(2)

where ρ is the fluid density, U∞ the upstream
velocity, D the tube diameter, l the tube length
and UG the gap velocity.

The drag and lift coefficients, respectively CDC

and CLC , are based on the pitch velocity and have
the following form :{

CLC

CDC

}
=

{
CL0

CD0

}
+

6∑
i=C,1

[
gi(xi, yi, yC)

{
∂CLC
∂xi

∂CDC
∂xi

}

+ hi(yi, yC)

{
∂CLC
∂yi

∂CDC
∂yi

}]
(3)

where CL0 and CD0 are respectively the lift and
drag coefficients for the steady state, and the
functions gi and hi represent the apparent inter-
cylinder displacements including time delay ef-
fects.

For all quasi-static/steady models, the force
coefficients and their derivatives are the exper-
imental inputs. The purpose of this work is
to investigate whether the sensitivity equations
method could provide an approximation of these
derivatives and therefore reduce the dependence
on experiments. It is important to understand
that sensitivities are not restricted to seven mov-
ing tubes and can be applied to more complex
theories (n-tubes model).

2. GEOMETRY AND SIMULATION
STRATEGY

A section consisting of 7 cylinders and 6 half-
cylinders was modeled, matching the experi-
mental geometry in the laboratory (Fig. 1).

Figure 1: Geometry of the simulation

Experiments show that cross-flow transverse to
an isolated cylinder becomes unsteady for a
Reynolds number Re between 30 and 40. Vortex
shedding phenomenon appears then. Similar un-
steadiness occurs in tube bundles. Knowing this
and in order to have a full laminar flow, the sim-
ulation is done on a rotated-triangle tube bundle
with P/D = 1.5 and subjected to a single-phase
low Reynolds number flow (Re = 20). For the
calculation of the Reynolds number, we use the
upstream velocity U∞ and the diameter of the
cylinders D.

3. GOVERNING EQUATIONS

3.1. Fluid flow equations

The steady flow of an incompressible fluid is de-
scribed by the continuity and momentum Navier-
Stokes equations in an Eulerian frame of refer-
ence :

∇ · u = 0 (4)
ρu · ∇u = ∇ · σ (5)

where ρ is the density (constant here), u the fluid
velocity, and σ the total Newtonian fluid stress
tensor (pressure and viscous forces) given by :

σ = µ(∇u + (∇u)T )− pI (6)

where µ is the dynamic viscosity (constant here),
and p is the fluid pressure. Dirichlet and
Neumann boundary conditions are imposed on
boundary segments ΓD and ΓN respectively :

u · n̂ = ū on ΓD (7)
σ · n̂ = t̄ on ΓN (8)

3.2. Sensitivity equations

The sensitivity of the flow characteristics is ob-
tained by differentiation of the governing equa-
tions with respect to an arbitrary parameter a.



Therefore, we define the flow sensitivities as the
partial derivatives of the velocity u = (ux, uy)
and the pressure p with respect to the parameter
a :

sa
u =

∂u

∂a
; sa

p =
∂p

∂a
(9)

The derivatives of the other variables, with re-
spect to a, are denoted by a prime. We obtain
the following fluid sensitivity equations by differ-
entiation of Eqns. (4) and (5) :

∇ · sa
u = 0 (10)

ρ(sa
u · ∇u + u · ∇sa

u) = ∇ · σ′ (11)

where σ′ is the sensitivity of the Newtonian stress
tensor, given as :

σ′ = µ
(
∇sa

u + (∇sa
u)T

)
− sa

pI (12)

The Dirichlet and Neumann boundary conditions
are differentiated in the same way.

In the present work, the shape parameter a is
either XC for an inline displacement or YC for a
transverse displacement.

3.3. Induced forces and derivatives

The drag and lift forces are obtained by projec-
tion and integration of the reaction term along
the surface of the cylinder, with n̂ = {n̂x, n̂y}T

as the outward normal to the cylinder and F the
force vector. :

F =
{

FD

FL

}
=

∫
Γa

σ ·
{

n̂x

n̂y

}
dΓ (13)

To compute stability derivatives, we proceed as
follows. The parameter a being the centröıd of
the circle, the material derivative has to be con-
sidered. It includes two separate contributions :
the Eulerian term σ′ and an additional so-called
transpiration term which represents the change of
frame of reference, from Eulerian to Lagrangian.

D

Da

∫
Γa

σ · n̂dΓ =
∫

Γa

((
σ′ +∇σ ·Πa

)
· n̂ · J

+ σ · Dn̂

Da
· J + σ · n̂ · DJ

Da

)
dΓ0 (14)

where J is the Jacobian of X. The Jacobian
J and derivative Dn̂/Da characterize the defor-
mation of the surface. In our case, the cylinder
is non-shrinkable and in translation so, respec-
tively, J = 1 and Dn̂/Da = 0, so that only the
first term is non zero. The transpiration term

reduces to ∇σ · Πa, which yields the following
expression for the stability derivatives (for exem-
ple with FL and a = YC) :

DFL

DYC
=

∫
Γa

(
σ′ +∇σ ·ΠYC

)
n̂ydΓ (15)

3.4. Normalized calculations

For the calculation of the equations we take nor-
malized terms:

U = 1 ; ρ = 1 ; D = 1 ; δa = 1 (16)

Taking for the viscosity:

µ =
1
Re

ρUD = 0.05 (17)

Thus the obtained sensitivities with respect to
X and Y are normalized.

4. NUMERICAL RESULTS

4.1. Pressure and Velocity field for flow
and sensitivities

Computations provide visualizations of the flow
and its sensitivity with respect to the central
cylinder coordinates. Fig. 2 shows an example of
the sensitivity ∂u/∂YC . We can see therefore the
impact on the flow of the given cylinder motion
through the sensitivity fields. The field of posi-
tive sensitivities being down the central cylinder
and the negative one being up the cylinder, it
shows that when the central cylinder goes up the
velocity increases down the cylinder resulting in
a negative lift force.

Figure 2: Lagrangian sensitivity of the u-velocity
for a Y-displacement of the central cylinder



4.2. Force coefficients and stability deriva-
tives

The force coefficients are defined as :

CL/D =
FL/D

1
2ρDU2

∞
(18)

The corresponding stability derivatives be-
come :

∂CL/D

∂a
=

1
1
2ρDU2

∞

∂FL/D

∂a
(19)

where a may be either the inflow (X) or crossflow
(Y) displacement of a cylinder. Table 1 presents
force coefficients and their derivatives.

CL CD
∂CL

∂YC

∂CD

∂YC

∂CL

∂XC

∂CD

∂XC
C 0.0 23.2 -31.2 0.0 0.0 2.5
1 0.0 17.0 0.2 0.0 0.0 10.2
2 -0.5 22.9 2.0 6.0 10.8 -13.5
3 0.0 24.0 5.0 0.0 -2.2 9.7
4 0.0 12.2 5.7 0.0 0.0 -5.7
5 0.0 24.0 5.0 0.0 2.2 9.7
6 0.5 22.9 2.0 -6.0 -10.8 -13.5

Table 1: force coefficients and stability deriva-
tives of cylinders with respect to displacements
YC and XC of cylinder C

The force coefficients and derivatives presented
in Table 1 are the inputs needed for the quasi-
static/steady theory outlined in section 1.

5. EVALUATION OF FLOWS ON
NEARBY GEOMETRY

Another use of sensitivity information is to pre-
dict the flow behavior for a nearby geometry
without having to perform a full flow recalcula-
tion. The procedure simply uses Taylor series
in parameter space. Let Γ (a0) denote the refer-
ence baseline and Γ (a0 + ∆a) the nearby geom-
etry. Let Φ be any solution variable. Its value
at a0 + ∆a is obtained by linear Taylor series in
a-space using the baseline values of the flow and
its sensitivities :

Φ(X̂, a0 + ∆a) ≈ Φ(X̂, a0) + ∆a
DΦ

Da
(X̂, a0) (20)

For the fluid variables, the material derivative be-
comes the Eulerian sensitivity since we are look-
ing at a fixed point in space. The pressure, for

example, is calculated as :

p(X̂, a0 + ∆a) ≈ p(X̂, a0) + ∆a · sa
p (21)

However for quantities like CL/D computed a pa-
rameter dependent boundary, one must use the
material derivative :∫

Γ (a0+∆a)
[σ · n̂]a0+∆a dΓ =

∫
Γ (a0+∆a)

[
σ + ∆a

Dσ

Da

]
a

n̂dΓ

Since the cylinder is translated as a rigid body,
the surface Γ keeps its original shape :

Γ (a0 + ∆a) = Γ (a0)

The force coefficients for the displaced cylinder
are therefore :

CL(a0 + ∆a) = CL(a0) + ∆a · DCL

Da
(22)

CD(a0 + ∆a) = CD(a0) + ∆a · DCD

Da
(23)

In order to verify the nearby solution, we
computed solutions for a sequence of increas-
ing central cylinder displacements in Y-and-X-
directions. We compare the contours of the
nearby solution and those of the recalculation.
For a displacement of 2% of the diameter D, the
Taylor approximation closely matches the solu-
tion obtained by direct calculation.(Fig. 3 and
4).

Figure 3: Contours of u velocity for Taylor series
and recalculation (a = YC)

For a displacement of 5% of D, the superposi-
tion of contours is not as good but still provides
acceptable values of the force coefficients.

Force coefficients are obtained by recalculation
and by linear Taylor approximation for X- and Y-
displacements ranging from 0 to 20 % of D. The



Figure 4: Pressure Contours for Taylor series
and recalculation (a = XC)

variation of CD for a X-displacement and CL for
an Y- displacement being quasi equal to zero, the
relative error is negligible. The other variations
are shown on Fig. 5.

Figure 5: Evolution of CD for an Y displacement
and CL for a X displacement

The relative error between the first order Tay-
lor extrapolation and the full recalculation is
given in Tables 2 and 3.

disp. Y/D Recalc. Taylor ser. relative err.
4% 23.35 23.29 0.25%
8% 23.64 23.39 1%
12% 24.06 23.49 2%
16% 24.60 23.59 4%
20% 25.25 23.69 6%

Table 2: Error in CD for a displacement along X

The nearby flow approximation is good enough
to predict flows and force behavior for a range
of perturbation of approximately 12% of D.The
Taylor series yields good results for broad inter-
val of displacements. For the Y-displacements,

disp. Y/D Recalc. Taylor s. relative err.
4% -1.26 -1.25 1%
8% -2.60 -2.50 4%
12% -4.08 -3.75 8%
16% -5.72 -5.00 12%
20% -7.43 -6.25 16%

Table 3: Error in CL for a displacement along Y

the behavior is more non-linear. The Taylor se-
ries extrapolation becomes unreliable for pertur-
bations larger than 12%, giving an error bigger
than 10%. It would be then necessary to use a
second order Taylor series extrapolation. Second
order Taylor series extrapolation could also pro-
vide the evolution for the stability derivatives.

6. DETERMINATION OF KEY
PARAMETERS FOR DESIGN AND

UNCERTAINTY ANALYSIS

In any experiment it is important to determine
the reliability of the measurements, which we can
quantify with an uncertainty analysis. Sensitiv-
ity data provides information as to how large the
uncertainty of the measurement will be. Further-
more it provides also a possibility to reduce this
uncertainty during the experiment design. By
analyzing values of the sensitivities, we can know
how strongly a parameter perturbation will affect
the flow and therefore its measurements. The un-
certainty of a function Φ due to an uncertainty
δa in a parameter a is:

δΦ = ±δ(a) · sa
Φ = ±

(
δa

a0

) (
∂Φ

∂(a/a0)

)
(24)

a0 being the nominal value of the parameter a.
Thus, to compare the influence of the different
parameters, it is important to study scaled sen-
sitivities sã

Φ, which are calculated as follows:

sã
Φ = a0s

a
Φ (25)

In this study, we measure the induced forces
on the central cylinder : Φ = FD and Φ = FL.
The different parameters that can influence the
measurements are then:

• The position of the central cylinder
(sỸF

FD
, sỸF

FL
, sX̃F

FD
, sX̃F

FL
)

• The flow-rate (sŨ∞
FD

, sŨ∞
FL

)



• The density ρ and viscosity µ

(sρ̃
FD

, sρ̃
FL

, sµ̃
FD

, sµ̃
FL

)

• The diameter of the cylinder (sD̃
FL

, sD̃
FL

)

Note however that U∞ , ρ , D and µ are not lin-
early independent (Re = ρU∞D/µ). Fig.6 shows
values of the scaled sensitivities listed above.
Thus, if we want to measure precisely the forces
on the central cylinder at its central position,
only the Y position of the cylinder has to be mea-
sure very precisely for the lift force and the diam-
eter D is the most important parameter for the
drag force. Comparison of scaled sensitivities is

Figure 6: Sensitivities of drag coefficients - Val-
ues relative to the nominal forces FD or FL

then a useful method during pre-design but the
picture could be more complete if we know the
uncertainty of the key parameters. Indeed, there
are of course certain parameters that are much
harder to control than others. The consequences
are that while the diameter has a big sensitiv-
ity but is easy to measure precisely, the flow rate
might be less sensitive but is harder to measure
precisely, making its contribution to the uncer-
tainty bigger than the viscosity one. Thus, if for
example, we have an uncertainty of 5% on the
flow rate and an uncertainty of 0.1% for the other
parameters, the contribution of each parameter
on the force coefficients is shown in fig.7.

Once the system is build and measurements are
done, it is also important to do an uncertainty
analysis. The total uncertainty is calculated as
follows:

(δΦ)tot =
∑

|δai||sãiΦ | (26)

In this case, we would have for the drag force,
an uncertainty of (δΦ)tot (FD) = ±1.13 for a
value of FD = 11.6 and for the lift force, an un-
certainty of (δΦ)tot (FL) = ±0.16 for a value of
FL = 0.

Figure 7: Contributions of key parameters - Val-
ues relative to the nominal forces FD or FL

CONCLUSION

In this paper, we have investigated the potential
for sensitivities to determine stability derivatives
for a tube bundles in cross-flow. The stationary
Navier-Stokes equations are used to describe the
flow. We have shown then that sensitivities are
a potentially useful method for the calculation
of the force derivatives and is powerful to com-
pute nearby solutions and determine influential
parameters for uncertainty analysis.
This method is very useful for this laminar case
but to increase the Reynolds number is neces-
sary. Unsteady flow simulations for Re = 100
and Re = 200 are being computed but certain
fundamental difficulties due to the sensitivities
behavior are faced.

7. REFERENCES

Price, S.J, M. P. P., and Giannias, N., 1988. “A
generalized constrained-mode analysis for cylin-
der arrays in cross-flow”. International Sym-
posium on Flow-Induced Vibration and Noise:
Flow-Induced Vibration and Noise in Cylinder
Arrays. ASME Conference New York, NY, USA,
pp. 25–55.

Turgeon, E. (2001). Méthode d’Éléments Fi-
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d’écoulements. PhD thesis, École Polytechnique
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