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ABSTRACT periodic shedding of vortices that are convected
. L : away from the bluff body. The frequency of vortex
In evaluating the service life of marine structuresS|,]ec|dingff follows the Strouhal law which states
such as risers, one must assess their dynamifyat the shedding frequency is proportional to the
response to vortices excitation (vortex-inducedpaiio of the flow velocity over the diameter of the
vibrations or VIV). At lock-in, i.e. when the cylinder (=S,U/D where S is the Strouhal

frequency of the shedding of vortices synchronizegmper). This alternating vortex shedding produces
with the natural frequency of the structure, the herogic forces on the structure. The later, if

amplitude of vibration of the structure is of the fayiple undergoes what is commonly called

order of its diameter. Sustained vibration of this ey induced vibration (VIV). The amplitude of
amplitude causes material fatigue which leads with;pration of the bluff body can attain important

time to failures. Predicting the flow velocity r@g qjyes (typically of the order of the diameter tf i
for which lock-in occurs is thus of importanceisit 555 section) for flow velocity included in the
also important in cases of flexible structures to|yck-in range or region. This lock-in range is

predict which mode of vibration will lock-in with gefined as the velocity range where the shedding
the wake. The interest here is in predicting latk-i fequency deviates from the Strouhal law and seems
for rigid and flexible structures like tensioned o «ock-in” with the structure natural frequency.
beams using a linear wake oscillator model: here, he high amplitudes of vibrations reached by the
lock-in is interpreted as a linear instability c&6s  gyrycture in this region are a major concern in
by the merging of the two natural frequencies of egards of fatigue life for offshore structures fsuc
dynamic system that includes two coupledygrisers. This partly explains the large amount of
oscillators, namely the wake and the structuresThi jitiarature on VIV (for comprehensive recent
instability is also referred as couple mode fluttér  (aviews see Williamson and Govardhan. 2004:
is found that the linear wake oscillator model Gappai and Benaroya, 2005). ' '
predicts lock-in range for both elastically ’
supported rigid cylinder and for flexible structsre
subjected to uniform flows. In particular, the lawe

Iap[l)<r(_3ach '3 a?le to {)hredu;:t trﬁns['gcl)n ff[omt ON€ rigid cylinders supported elastically and for fletel
ock-In_moae 1o anothér Tor Texibie SWUCUIes i\ res |ike tensioned beams. For this, a

(mode-switching). It is also capable of predicting ;inaarized version of Facchinetti's wake oscillator

when more than one mode can lock-in with th€y,qe| (Facchinetti et al., 2004a; Facchinetti et al
wake for a fixed velocity (time sharing). 2004b; Mathelin and de Langre, 2005) is used
following de Langre (2006). This non-linear wake-

1. INTRODUCTION oscillator model was recently validated for long

_ _ _ _ _ structures in non-uniform flows against DNS

The wake behind a fixed cylinder in a uniform computations and experimental results by Violette
cross flow is unstable past a certain criticalet al. (2007a). Comparisons showed good
Reynolds number. This instability takes the form ofagreements with both the experimental results and

Here, the interested is in seeing if a stability
analysis of a linearized wake-oscillator model can
give insights on the physics related to lock-in dor



the DNS computations. coincide for a certain range of reduced velocities
The first section of this paper explains thebefore diverging again at a highr. In the range of

methodology used in the linear stability approach.coinciding frequencies, there is a positive growth
In the second section, the reader can find datails rate which means that the system is unstable. This
the linear model predictions for lock-in range of ainstability is referred to as coupled-mode flutter
rigid cylinder subjected to a uniform flow. In the instability. Also plotted on Figure 1 (left) is the
third section, the capability of the linear model t frequency prediction of the non linear system
predict lock-in ranges of the different modes of a(obtained by Fourier analysis of the cylinder
flexible structure is checked. Information on how displacement with time calculated by numerical
this linear wake oscillator model can predict whattime integration of Eq. 1). One can observe that th
will be called later “time sharing” is given in lock-in range and the linear instability range
Section four. coincide very well. Lock-in can be interpreted as a

coupled-mode flutter instability between two

coupled linear oscillators (see also Tamura and
2. METHODOLOGY FOR THE LINEAR Matsui, 1980).

STABILITY APPROACH

In a recent paper, de Langre (2006) proposed a 5,
linear version of the Facchinetti et al. (2004ayVIl . 9
prediction model for elastically supported rigid g f__f
cylinders. The original non linear coupled = L g0
cylinder/wake dynamic system is formulated in a g "m0 8
dimensionless form as y
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5 ¥+(2£+1(STUr)Ja—y+ y=M(sUr)q a o
t H t , (1) Figure 1:Linear prediction for oscillations
2°q . 0q 2 _ 0%y frequency (left figure) and growth rate (right
ot? * £(STUr)(q DE * (STUr) a=A ot? figure) as a function of the reduced velocity (dlots

Also shown on the figure is the oscillations
where y is the dimensionless cylinder frequency computed with the non-linear model as a
displacement in the cross flow direction and the function of Ur (solid line).
wake variableq is the fluctuating lift coefficient
gq = 2C(1)/C, felt by the later. The ter@, is the
imensional time and length are respectively
T = t/Qs andY = yD. The parameter)s is the THE SCRUTON NUMBER.

natural pulsation of the cylinder in stagnant water Chen (1987) reports in his book experimental
andD is its diameter. In (1Pr=2zU/(QD) is the  results on the lock-in range evolution with the
reduced velocity,u=(Mq+Maia)/pD” is the mass structural parameters of an elastically supported
ratio (m being the linear mass of the cylinder, rigid cylinder in uniform flow (namely its damping

My the linear mass of the displaced fluid gnthe £ jinear massm,,). This is shown in Figure 2a

fluid density) and=C,/(4zS,) is the stall parameter (jock-in range is referred as synchronization range
(Co being the mean sectional drag coefficient). Thein his book). It can be seen on this figure that

coupling parameterM=C,y/(16z°Stx) and the heyond a certain Scruton number (around 32), there
choice of A=12 and¢=0.3 are described in details is no lock-in observed. The Scruton number is
in Facchinetti et al. (2004a). If the@ in Eq. (1) iSs  defined as

neglected the equation becomes linear; a further

simplification is to remove all linear damping texm >

in the system of equations (1). By modal analyéis o J= ﬂfmcw @)

this simplified coupled linear system, one can oD?

compute the natural frequency of the system and

the growth rate as a function of the reduced vgtoci

Ur. This is showed on Figure 1. rate evolution with the reduced velocity is plotted

It can be seen that for lour, the system poSSess ¢, o' Scryton numbers of interest. The growts rat
two natural frequencies, one for the solid mode an(i'is calculated as in the previous section, i.e. oith

one for the wake mode. These two frequencie§he damping terms. On the same figure, the

For the linear wake oscillator model, the growth



damping felt by the cylinder expressed as

y By comparing Fig. 2a and Fig. 2b one can

¢(Ur)=2¢+-=(StUr), (3)  conclude that the influence of the structural
H parameters on the lock-in region reported by Chen

(i.e. widening of the lock-in region when decregsin

is also plotted. The lock-in region is definedlas t the Scruton number and disappearance of lock-in

range of reduced velocities where the growth mte ipast a critical value) is qualitatively reprodudad

above the damping value (shown on Figure 3). Thehe linear wake oscillator model.

limits of the lock-in region as a function of the

Scruton number predicted by the linear wake

oscillator model appear on Figure 2b ®#=0.18, 4. LOCK-IN RANGES FOR FLEXIBLE

C.=0.37, C,=2 and &0.002 (Scruton number is STRUCTURES: “MODE SWITCHING".

varied by changing the linear mass of the cylinder

Mey) The interest here is to predict the lock-in regions
W for the different modes of a flexible structure
Ur o — - subjected to a uniform flow. Predicting which mode
o N of the structure will lock-in with the wake is of
ol ] practical importance since the amplitude of the
Al b bending stress that it experiences is a function of
ol N curvature, and thus of the mode number. The
5| ] frequency of vibration is also very important in
oL ] fatigue analysis.
3 J For a tensioned beam, system (1) is rewritten
2l J (less the non linearity)
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Figure 2:Evolution of the lock-in range for an
elastically supported cylinder in unform flow with T (L)
the Scruton number: (a)Chen (1987), (b) linear =— =1, (5)
wake oscillator model prediction. El
012 : whereT is the tension in the structure akdl its
— Growth rate bending stiffness. No structural damping is
0.1fm =+ (Ur)

included in (4). It is neglected since it is comsihl
small when compared to the fluid induced damping
(this is quite standard, Violette et al., 2007a)eT
reduced velocity is defined with the fundamental
structural frequency that is written

1 2
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Figure 3:Definition of the lock-in region
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where m; is the sum of the linear mass of theand the aspect ratid/D is set at 1. The
cylinder and displaced fluid. In (4), the second an phenomenological parameters used &g=0.37,
fourth derivatives with respect to the spanwiseCy,=2 andSt=0.18.

direction z are expended using finite differences It can be seen in Fig. 4a that the system
method. Thus, fom computation points on the (structure/wake) goes through successive regimes
cable, we have 12 linear coupled oscillatorsn( characterized by one dominant unstable mode
structural andn wake oscillators). The modal (mode with the most important growth rate) when
analysis applied here on the system (including théncreasing the reduced velocity. For example, Mode
linear damping term this time) is the same as i2 dominates foldr between 9 and 13 and Mode 3
Section 2. Depending on the reduced velotity for Ur from 14 to 19. Inside those reduced velocity
studied, one finds a number of unstable modes, i.@anges, the frequency seems to be varying linearly
modes with a positive growth rate. with Ur. However, the transition from one
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dominant mode to another, which will be called

here “mode switching”, is characterized by a

discontinuity in the frequency which forms the

stairs-like shape of the frequency as a function of
Ur. Each steps of the stairs being the lock-in range
of a structural mode.

For the same range ofUr, non-linear
computations were performed using the full non-
linear wake oscillator model. For each non-linear
computation random values gfon each point of
order 1@ are used as initial conditions. Oscillations
frequency is derived from the evolution of
displacement with time using Fourier analysis for
each reduced velocity. Those oscillations frequency
predictions are compared on Fig. 4a with the linear
model results. The same stairs-like evolution ef th
cable vibration frequency witllr is predicted, i.e.
that the mode switching observed with the non
linear model is also characterized by a frequency
discontinuity. According to Fig 4a., there seems to
be a reasonable agreement between the linear
model and non linear model prediction for lock-in
range of the different modes of the structure.

Thus, one can suggest that the vibration mode
with the highest linear growth rate will be the one
locked-in with the wake (and thus observed in the
structure response). Following this logic, mode
switching between two adjacent modes is observed
when respective linear growth rate curves cross
each other.

5. MULTIPLE RESPONSES: “TIME
SHARING”.

Figure 4:(a) Frequency evolution with reduced velocity

for both linear (open signs) and non-linear modite),

(b) vibrations modes growth rates obtained by thedr
model.

When looking at Fig. 4a, one can observed some
discrepancies between the modes predicted by the
linear and the non-linear models. For example, at
. L Ur=25, the linear model predicts that Mode 6 will

For a tensioned cabley (infinitely large) the e gominant when the dominant mode observed in
frequencies of the two most unstable modes withpe response computed numerically with the non
respect to their growth rate as a functiorllofare  jinear model is Mode 5. However, when performing
plotted on Figure 4a for reduced velocity up t0 30.;3 second non linear computation using again
Shown on Figure 4b are the growth rates of the tWQangom values on the distributed wake oscillagprs
most unstable vibrations modes of the system as gnq thys different initial values than the previous
function of Ur. The mass ratio used hereuds= 2 cgjculation, Mode 6 is observed in the permanent



responses. looking at the frequency of the response of therris
By looking at Fig. 4b, it can be noted that thein the two time segments of the test, one can
growth rates of the two most unstable modesobserve a jump in the frequency. In other words, in
namely Mode 5 and 6 in this case, have the sameach time segment, the cable vibrate at one single
values. This means that both unstable modes afgequency, but this frequency changes around
thus equally capable of appearing in the responsd=30s. Similar experimental results are reported by
Violette et al. (2007b) verified the effect of the Swithenbank (2007). In this text, this phenomenon
relative linear growth rates of two modes on theirwill be referred as “time sharing” (following the
occurrences in the non linear computations. Theyerminology used by Swithenbank, 2007).
found that similar linear growth rates leaded to Computation is made with the linear wake-
almost even split of the occurrences in the noroscillator model for the configuration for whicheth
linear computations. This interesting resultresults of Fig. 5 are obtained. The parameters used
indicates that at a single flow velocity the wakec are summarized in Table 1. In this talleD);.., is
“select” to lock-in between more than one strudturathe ratio of the length of the cylinder exposelte t
modes characterized by an individual frequency. flow over its cross section diameter. Inversely,
(L/D)stagnany IS the length of the part of the structure
‘ _ MODE4 ‘ in stagnantvater over the cylinder diameter. The
057 linear stability analysis of system (4) gives 2 m®d
05} ‘ ‘ ‘ ‘ ‘ with identical growth rate (difference being of the
order of the 0.1% between them). The
dimensionless frequency predicted for both modes
are 7.13 and 6.67. The frequencies in Hz are
recovered by multiplying by the fundamental
0.5F ‘ ‘ ‘ ‘ ‘ frequencyfs (Eq. 6). This frequency is calculated by
or replacing the bending stiffnedsl, tensionT and
‘ ‘ ‘ ‘ ‘ riser lengthL in Eq. 6 with the values for the test
. : : : : given by Chaplin et al. (2005) corresponding to the
-OWWMWWMHHHM results shown on Fig. 5, which aiie=1073 N,
‘ ‘ ‘ ‘ ElI=29.9 Nnt andL=13.12m. That way, one finds
5.31 Hz and 5.68 Hz respectively for both modes.
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Figure 5:Modes contribution to the response of a |l
tension beam subjected to a uniform flow on half of . | 625.9

it's length (Fig.7 in Chaplin et al. 2005)

Experimental evidences of this can be found in Phenomenological Parameters

the literature. Chaplin et al. (2005) reported float c 1037
certain test conditions, they observed high o=
modulations with time of the modes contribution of G |12
a tension beam, or riser, with low flexural rigidit St| 0.18

subjected to a uniform flow on approximately half
of its length (the other part being in stagnantemat
In their paper (Chaplin et al., 2005) mentioned tha
those modulations were triggered by perturbations
in the system like small vibrations of the assembly
Figure 5 shows one example of this. It shows the The evolution of the riser frequency response
modal contribution of Mode 4 to Mode 9 (in the with time can be found by wavelets analysis of the
cross flow direction) in the response of the risertime trace of Fig. 5. For the first time segment
with time. It can be seen that Mode 8 dominates thét=15-30s), the frequency of the riser vibration is
response of the structures for time between say 15.5 Hz and is 5.1 Hz for the second segm&+83-

and 30 seconds. For time higher than 30 seconds,@0s). The agreement between the linear theory and
combination of Mode 4 to 7 is observed. Whenthe experiment is quite good for the frequency

Table 1: Structural and phenomenological
parameters used for the linear wake oscillator
model.



difference (which is 0.37 Hz for the linear wake Chen, S.S., 1987, Flow-Induced Vibration of
oscillator model and 0.4 Hz for the experiment).  Circular  Cylindrical ~ Structures. Hemisphere
publishing corporation.

6. CONCLUSIONS Facchinetti, M.L., de Langre, E., Biolley, F, 2004a

The results presented in this paper show that:  Coupling of structure and wake oscillators in
vortex-induced vibrations. ldournal of Fluids and

1. the main features of the evolution with the Structures19: 123-140.
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elastically supported rigid cylinder in Facchinetti, M.L., de Langre, E., Biolley, F., 2004
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by a linear wake oscillator model. European Journal of Mechanics B/Flujds3. 199-
208.

2. lock-in ranges of the different modes of a _ _
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oscillator mode (validated against DNS andVibration of circular cylinders. Idournal of Sound

experiments) can be predicted by a simpleand Vibration 282 575-616.

linear wake oscillator model.

de Langre, E., 2006, Frequency Lock-in is caused
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of the structure to the wake. This multiple

response behavior, which is referred asMathelin, L., de Langre, E., 2005, Vortex-induced

“time sharing” in this text, has been vibrations and waves under shear flow with a wake

experimentally observed (Chaplin et al., oscillator model. In European Journal of

2005; Swithenbank, 2007). One case whereMechanics B/Fluids24: 478-490.

the linear wake oscillator model

successfully  predicts  experimentally swithenbank, S.B., 2007, Dynamics of long flexible
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sheared flowsPhD Thesis, MIT Departement of
Those results on time sharing suggest that th#lechanical Engineering
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