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Department of Mechanical Engineering, McGill University, Montreal, Canada

Jin Jiang
School of Power and Mechanical Engineering, Wuhan University, Wuhan, P.R.China

ABSTRACT

Cantilevered thin flexible plates in subsonic ax-
ial flow may lose stability at sufficiently high flow
velocity. Once the critical point is exceeded, flut-
ter takes place, and the flutter amplitude grows
as the flow velocity further increases. One can
observe rich dynamics from this fluid-structure
interaction system when some variants are taken
into account. In particular, this paper considers
two cases: with (i) a spring support of either lin-
ear or cubic type, and (ii) a concentrated mass
mounted on the plate. For each specific variant
of the original system, the influence of the “ad-
ditional” spring support or concentrated mass is
investigated in terms of its magnitude as well as
location. Some interesting phenomena found in
the dynamics of the variants of the system are
summarized in this paper.

1. INTRODUCTION

The dynamics of cantilevered thin flexible plates
in axial flow is one the classical problems of ap-
plied mechanics. Some of the early work was con-
cerned with the flapping of flags (see Kornecki
(1978)) and the dynamics of aircraft and mis-
sile skins, particularly in supersonic flow (Dowell,
1975). More recently, there has been renewed in-
terest in the dynamics of cantilevered, typically
long, plates in incompressible flow, not only as
an abstract problem, but also for engineering ap-
plications, e.g., in paper-making (Watanabe et
al., 2002), for electricity generation (Allen and
Smits, 2001), and in biomimesis (Triantafyllou
et al., 2004).

The present paper summarizes some recent re-
searches conducted by the authors on this topic.
The two-dimensional plate is modelled as a beam
with an inextensible centreline, and an unsteady
lumped vortex model is used to calculate the

pressure difference across the oscillating plate.
The analysis of the system dynamics is carried
out in the time-domain. The system loses sta-
bility by flutter at sufficiently high flow velocity,
and both the instability threshold, as a function
of the system parameters, and the post-critical
behaviour of the system have recently been stud-
ied extensively by Tang and Päıdoussis (2007).
Two variants of the system are studied in the
present paper: in the presence of (i) a spring
support, linear or nonlinear, somewhere along the
plate, and (ii) a concentrated mass, at various lo-
cations along the length of the plate. The current
research has not only originated from theoretical
curiosity but is also related to the design of a new
type energy-harvesting device, which is presented
in another paper.

2. THE ORIGINAL SYSTEM

A schematic diagram of a cantilevered flexible
plate in axial flow is shown in Fig. 1. The geo-
metrical characteristics of the rectangular homo-
geneous plate are the length of the flexible section
L, width B and thickness h; B →∞ and h ¿ L
for a two-dimensional thin plate. Normally, there
is a rigid segment of length L0 as part of the
clamping arrangement at the upstream end. The
other physical parameters of the system are: the
plate material density ρP and bending stiffness
D = Eh3/

√
12(1− ν2), where E and ν are, re-

spectively, Young’s modulus and the Poisson ra-
tio of the plate material, the fluid density ρP, and
the undisturbed flow velocity U . As shown in
Fig. 1, W and V are, respectively, the transverse
and longitudinal displacements of the plate. FL

and FD are the aero/hydro-dynamic loads act-
ing on the plate in the transverse and longitu-
dinal directions, respectively. S is the distance
of a material point on the plate from the origin,



measured along the plate centreline in a coordi-
nate system embedded in the plate. Moreover,
material damping of the Kelvin-Voigt model is
considered, with the loss factor denoted by a.
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Figure 1: A cantilevered flexible in axial flow.

The equations of motion of the plate can be
written in nondimensional form as (Tang and
Päıdoussis, 2007)
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where the overdot and the prime represent
∂( )/∂τ and ∂( )/∂s, respectively. The nondi-
mensional variables are defined by

(x, y) =
(X,Y )

L
, (w, v) =

(W,V )
L

, s =
S

L
,

τ =
t√

ρPhL4/D
, α =

a√
ρPhL4/D

,

l0 =
L0

L
, fL =

FL

ρFU2
, fD =

FD

ρFU2
. (4)

Moreover, the mass ratio µ and the reduced flow
velocity UR are, respectively, defined by

µ =
ρFL

ρPh
, UR = UL

√
ρPh

D
. (5)

In Eq. (3), the aero/hydro-dynamic loads are
calculated using the unsteady lumped vortex
model (Tang and Päıdoussis, 2007). On each in-
dividual panel, the pressure difference across the

plate ∆p is first computed and then decomposed
into the lift fL and the drag fD. That is

fLi = ∆pi cosαi, fDi = ∆pi sinαi + CD, (6)

where αi is the incidence angle of the ith panel.
And an additional drag coefficient CD, assuming
a uniform distribution over the whole length of
the plate, may be considered in fD to account for
the viscous effects of the fluid flow.

The analytical model of the original system
is first validated against available experimental
data for the flutter threshold, and it has been
shown that the level of agreement is superior
to that achieved by other theories (Tang and
Päıdoussis, 2007), though still not sufficiently
good – with theory generally under-predicting
the threshold. This discrepancy between theo-
retical predictions and experimental observations
has been attributed to the lack of a proper ac-
counting of (viscous) aero/hydro-dynamic drag
in the theory, which would increase the tension
in the plate and thus the stability threshold of
the system. Another prominent “weakness” of all
theories, including ours, is that they fail to pre-
dict the subcritical bifurcation and strong hys-
teresis observed in the experiments. One possi-
ble explanation may be that all experiments are
conducted in a wind or water tunnel, while all
theories normally consider open flow. However,
the reason causing the observed subcritical bifur-
cation may be very complicated (see the work by
Tang and Päıdoussis (2007) for details); the exact
underlying mechanism is still an open question.

As already shown in the work by Tang and
Päıdoussis (2007) for a specific system with µ =
0.2, the dynamics of the system without springs
or masses added is relatively simple. When UR

is below the critical point URc, the plate remains
straight; any small disturbance to the system is
attenuated. Once UR exceeds URc, flutter occurs,
and the flutter amplitude grows as UR increases
further.

3. WITH AN ADDITIONAL SPRING
SUPPORT

A schematic diagram of a cantilevered flexible
plate with an additional (linear or cubic) spring
support in axial flow is shown in Fig. 2, where SS

is the location of the spring, FS = −KLW (SS)−
KCW (SS)3 is the spring force acting on the plate,
and KL and KC are the stiffnesses of the linear
or cubic spring, as the case may be. When the
vibration amplitude is large, the longitudinal dis-
placement of the plate, V , becomes important.



In the present paper, the additional spring sup-
port is assumed to be able to move longitudinally
with the plate; only transverse spring forces are
considered. Therefore, the equations of motion
of the plate are still given by Eqs. (1) and (2).
However, instead of Eq. (3), the effective force
acting on the plate should be calculated by

feff = µUR
2

(
fL − w′fD + w′′

∫ 1

s
fD ds

)

+ fSδ(s− sS), (7)

where δ denotes the Dirac delta function, and
sS = SS/L is the location of the additional spring
support normalized by the length of the flexible
plate L. The nondimensional spring force fS is
given by

fS =
L3

D
FS = −kLw − kCw3, (8)

where kL and kC are, respectively, the nondi-
mensional stiffnesses of the linear and the cubic
spring, defined by

kL =
L4

D
KL, kC =

L6

D
KC, (9)

which represent the ratios of the spring forces to
the restoring force of the plate.
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Figure 2: A cantilevered flexible plate with an
additional spring support in axial flow.

When a linear spring support is added, the
plate may lose stability statically (buckling or di-
vergence instability) rather than by flutter. Sta-
bility diagrams of a cantilevered flexible plate in
axial flow with an additional linear spring sup-
port at sS = 1 and sS = 0.8 are shown in Figs. 3
and 4, respectively. It is found that the system
dynamics is dependent not only on the stiffness
but also on the location of the spring.

When the linear spring support is located at
sS = 1, it can be seen in Fig. 3 that the plate
loses stability through flutter at various values of
UR, provided kL < 59; loss of stability through
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Figure 3: Stability diagram of a cantilevered flex-
ible plate in axial flow with an additional lin-
ear spring support at the plate trailing edge, i.e.,
sS = 1. The system parameters are: µ = 0.2,
l0 = 0.01, α = 0.004 and CD = 0. The spring
force is given by fS = −kLw(s = 1).

divergence (buckling) occurs when kL > 59. For
kL < 59, the value of URc increases with increas-
ing kL. On the other hand, when kL > 59, URc

decreases as kL increases. However, with fur-
ther increase in kL, URc converges to a constant
URc = 11.30, as shown in the inset of Fig. 3. This
implies that a clamped/simply-supported plate
in axial will lose stability through buckling at
URc = 11.30 for the particular values of µ, l0,
α and CD used in the calculations (see the cap-
tion of Fig. 3), since the linear spring support is
equivalent to a simple support when kL → ∞.
Moreover, when kL > 59, the plate may develop
flutter at higher values of UR, beyond the onset
of buckling. It can be shown that all the limit
cycle oscillations observed in the flutter region of
Fig. 3 are of the symmetric type. At a given value
of kL, the flutter amplitude grows with increasing
UR. The plate cannot develop divergence (buck-
ling) again, beyond the flutter threshold in this
range of kL.

As shown in Fig. 4, the three stable states
(i.e., stable flat state, static buckling and flut-
ter) can also be seen when sS = 0.8. The plate
loses stability through flutter when kL < 193.
For a range of kL around kL = 193, divergence
may succeed flutter at higher UR. But, when
kL > 193, the primary instability is buckling;
flutter never takes place, no matter how large UR

is. Again, only symmetric limit cycle oscillations
are found in the flutter region; at a fixed value of
kL, the flutter amplitude grows as UR increases.
A very interesting stronger-constraint/less-stable
phenomenon that can be observed in Fig. 4: the
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Figure 4: Stability diagram of a cantilevered flex-
ible plate in axial flow with an additional linear
spring support at sS = 0.8. The system pa-
rameters are: µ = 0.2, l0 = 0.01, α = 0.004
and CD = 0. The spring force is given by
fS = −kLw(s = 0.8).

system loses stability at a lower critical reduced
flow velocity URc when 0 < kL < 106 than when
kL = 0. In fact, when 0 < kL < 56, the value of
URc decreases as kL increases.

If the additional spring support is cubic, it
can be seen in Fig. 5 for the case sS = 0.8 and
kC = 6000 that the system exhibits richer dy-
namics. The system still loses stability through
flutter, but in a very abrupt manner, at URc =
9.92. After the primary bifurcation, the sys-
tem develops symmetric limit cycle oscillations,
before a secondary bifurcation takes place at
UR = 15.33; beyond this point, the limit cy-
cle oscillations become asymmetric. In the re-
gion of period-1 asymmetric limit cycle oscilla-
tion (i.e., 15.33 < UR < 17.86), it is interesting
to see that, with increasing UR, the flutter am-
plitude of the plate trailing edge decreases. A se-
ries of period-doubling bifurcations take place at
UR = 17.86, 18.49 and 18.74. A region of chaotic
motions occurs when 18.81 < UR < 19.62. How-
ever, as UR is increased further, regular limit
cycle oscillations re-emerge; another period dou-
bling route to chaos can be observed in the region
19.62 < UR < 21.10. The main region of chaos is
for 21.10 < UR < 23.45; there is a periodic win-
dow between UR = 22.36 and UR = 22.56. Fi-
nally, the plate becomes statically buckled when
UR > 23.45.

4. WITH AN ADDITIONAL
CONCENTRATED MASS

When there is an additional concentrated mass
mA located at SM on the plate, as illustrated in

−0.4 0.0 0.4
w(s=1)

−10

0

10
dw

(s
=

1)
/d

τ
(k) UR=21.02

(d) UR=17.32 (e) UR=18.17 (f) UR=18.71

−10

0

10

dw
(s

=
1)

dτ

(g) UR=18.79 (i) UR=20.74(h) UR=19.49 (j) UR=20.95

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
UR

0.0

0.2

0.4
(b) An enlargement of the block in (a)

8 10 12 14 16 18 20 22 24 26
UR

−0.4

−0.2

0.0

0.2

0.4

Lo
ca

l e
xt

ra
m

a 
of

 ti
p 

am
pl

itu
de

(a) A bifurcation diagram

−0.4 0.0 0.4
w(s=1)

(l) UR=21.21

−0.4 0.0 0.4
w(s=1)

(m) UR=21.91

−0.4 0.0 0.4
w(s=1)

(n) UR=22.47

−10

0

10

dw
(s

=
1)

/d
τ

(c) UR=14.14

Figure 5: The dynamics of a cantilevered flexible
plate in axial flow with an additional cubic spring
support at sS = 0.8. The system parameters are:
µ = 0.2, l0 = 0.01, α = 0.004 and CD = 0. The
spring force is given by fS = −kCw3(s = 0.8),
where kC = 6000.

Fig. 6, the equation of motion of the plate, i.e.,
Eq. (1), should be rewritten as

[1 + σMδ(s− sM)] ẅ + (1 + α
∂
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w′′′′
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0
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)
ds

]
ds = feff, (10)

where δ denotes the Dirac delta function, and the
mass parameter σM is defined by

σM =
mA

ρPhL
, (11)

representing the ratio of the additional concen-
trated mass to the mass of the plate itself (in



the sense of the per-unit-width mass). Moreover,
sM is the location of the additional concentrated
mass, normalized by the length of the flexible
plate L, i.e., sM = SM/L.
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Figure 6: A cantilevered flexible plate in axial
flow with an additional concentrated mass.

The influence of an additional concentrated
mass, for various values of σM and sM on sta-
bility is shown in Fig. 7.
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Figure 7: The influence of an additional concen-
trated mass on system stability. The other pa-
rameters of this system are µ = 0.2, l0 = 0.01,
α = 0.004 and CD = 0.

It can be seen in Fig. 7(a) that a small ad-
ditional concentrated mass σM = 0.01 at a va-
riety of locations along the length of the plate
has different effects on the critical point. When
there is no additional mass, i.e., for sM = 0,
URc = 9.92. When sM < 0.4, the value of
URc decreases slightly with increasing sM. When
0.4 < sM < 0.7, URc grows with increasing values
of sM and reaches the maximum URc = 9.97 at
sM = 0.7. Beyond this maximum point, URc de-
creases again, more rapidly this time, as sM fur-
ther increases; finally, the minimum URc = 9.70
is observed when the additional concentrated
mass is located at the trailing edge of the plate,
i.e., sM = 1.
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Figure 8: The vibration modes of the systems
with various additional concentrated masses lo-
cated at the trailing edge of the plate, i.e., sM =
1. Note that the vibrations modes are obtained
at the corresponding critical point of each indi-
vidual case. The other parameters of the system
are µ = 0.2, l0 = 0.01, α = 0.004 and CD = 0.

When sM = 0.75 or sM = 1 while σM is varied,
the flutter boundaries obtained are, respectively,
shown in Figs. 7(b) and (c). It can be seen in
Fig. 7(b) that, when sM = 0.75, the value of URc

increases monotonically from URc = 9.92 with
σM = 0 to URc = 12.96 with σM = 1. When
sM = 1, the relation between URc and σM be-
comes complicated: as shown in Fig. 7(c), URc

decreases significantly with increasing σM when
0 < σM < 0.1; however, for 0.1 < σM < 0.2,
the variation in URc is negligibly small, and a
plateau is formed where URc = 8.70. As σM is
increased further, the trend for URc is reversed;
and, finally URc = 10.04 when σM = 1. The pat-
tern of the flutter boundary presented in Fig. 7(c)
may be correlated to the vibration modes of the
plate along the flutter boundary, as shown in
Fig. 8. One can find that, when σM is small,
say σM < 0.2, the mode shapes of the plate in
Figs. 8(a) through (e) are qualitatively the same;
these vibration modes are combinations of the
first and second beam-mode shapes. In contrast,
when σM ≥ 0.3, as shown in Figs. 8(f) through
(h), the vibration modes are solely determined
by the second-beam-mode shape, in that a quasi-



stationary node becomes more prominent.
It has been observed in Fig. 7(a) that a small

additional concentrated mass σM = 0.01 located
at sM = 1 significantly reduces the value of crit-
ical point; moreover, as shown in Fig. 9, it also
affects the manner of the onset of the flutter and
the post-critical dynamics of the system. It is
seen in Fig. 9(a) that, as compared to the bifur-
cation diagram of the system in the original con-
figuration, flutter takes place in a more abrupt
manner; and, beyond the critical point, the flut-
ter amplitude is rather large. This phenomenon
may imply the occurrence of a subcritical bifur-
cation instead of a supercritical one.
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Figure 9: The dynamics of the system with a
small concentrated mass located at the trailing
edge of the plate, i.e., σM = 0.01 and sM = 1.
The other parameters of the system are µ = 0.2,
l0 = 0.01, α = 0.004 and CD = 0. Note that
the Poincaré maps are obtained by simultane-
ously recording the position and the velocity of
the trailing edge of the plate with w(s = 0.5) = 0
as the controlling event.

With the small additional concentrated mass
σM = 0.01 located at sM = 1, symmetric limit cy-
cle oscillations can still be observed at higher UR

beyond the critical point URc = 9.70, as shown in
Figs. 9(b), (d) and (g) for the case UR = 10.37 for
example. Note that the flutter amplitude of the

system with an additional mass is significantly
larger than that of the system in the original con-
figuration, even though σM = 0.01 is so small.
As UR increases further and exceeds UR = 10.43,
chaos takes place, as shown in Figs. 9(e) and (h)
for UR = 10.49 where chaotic motions start to
emerge, and in Figs. 9(f) and (i) for UR = 10.95
where the dynamics of the system is fully chaotic.

5. CONCLUSIONS

The present paper studies the dynamics of two
variants of cantilevered flexible plates in axial
flow: with an additional (i) spring support and
(ii) concentrated mass, with different magnitudes
and at various locations along the length of the
plate. It has been shown that both the mag-
nitude and the location of the additional spring
support or concentrated mass may qualitatively
altered the dynamics of the system.
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