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ABSTRACT 

The paper deals with rotor instability, which is 
encountered with rotors supported in sliding 
bearings. Possibilities to suppress instability by 
external excitation will be studied both theoretically 
and experimentally. The test stand enabling bearing 
bushing excitation by piezoactuators was designed 
and manufactured. Theoretical study of kinematic 
excitation influence on rotor behavior was carried 
out and some calculated results are shown. Strategy 
of further proceedings is outlined. 

1. INTRODUCTION 

With increasing speed of rotating machines 
problems with instability of rotor became more and 
more serious. The instability termed as “oil whirl” 
is caused by tangential component of hydrodynamic 
force occurring in narrow gaps of sliding bearings 
or labyrinth seals. Rotor instability is a very 
dangerous phenomenon, because the rotor vibrates 
with very high amplitudes reaching practically the 
whole of bearing clearance. Means for suppression 
of instability consist in changing conditions in the 
hydrodynamic film (specific load, oil inlet 
temperature), changing geometry of bearing gap or 
using additional damping (two oil films in series). 
However, in some cases the above-mentioned 
methods are not effective and it is necessary to look 
for more sophisticated methods of rotor 
stabilization. 

2. EXPERIMENTAL TEST STAND 

Some articles were published on the subject of 
quenching of self-excited vibrations by means of 
kinematic excitation, eg. Tondl (2005). This method 
was up to now used only for simple mechanical 
systems. External excitation of rolling bearings was 
used for reducing vibration amplitudes of aero 
engine rotors. However, no information is available 
about using external excitation for suppression of 
the rotor self-exciting vibrations. To investigate this 
possibility experimental stand was designed and 
manufactured (see Fig. 1 and 2). 

 
Figure 1: Longitudinal section of test stand 

 
Figure 2: Crossl section of test stand 

Test stand should enable running of the rotor up to 
its stability limit so that the effect of active control 
could be investigated. Bearing diameter of 30 mm 
permits to design the rotor as rigid. The base of the 
stand is constituted by the frame 1 composed of 
aluminous profiles. Driving motor clamping plane 2 
is fastened to the frame by screws 18. High 
frequency motor 3, fixed in clamping plane 2, is 
connected to the test shaft 7 by elastic coupling 6, 
which is connected with the motor by short pin 15 
and collet 8. Using the collet was necessary because 
the only available high speed motor for speeds up to 
20.000 rpm is manufactured for drilling spindles. 
The motor is supplied by high-frequency current 
converter, enabling speed control by computer. The 
elastic coupling is of the multi-plate type. It 
constitutes two joints, thus separating the shaft from 



motor drive. Bearing pedestals 5 contain bearing 
bushings, inserted into pedestals with clearance, so 
that they can move. The bearing bushings are 
connected by means of screw bars to piezoactuators 
12. Two vertically and two horizontally arranged 
piezoactuators enable excitation of both bearing 
bushings by practically arbitrary force. The 
piezoactuators are secured in frames 13 and 14 
respectively, which are fastened to the stand base. 
Piezoactuators have maximum deviation of 60 µm, 
maximum force in tension/pressure 800/300 N. 
Four relative vibration sensors 10 are mounted in 
carriers 9, fastened to bearing pedestals to follow 
the rotor deviations.  

The bearings are of circular cross section. 
Selected bearing clearance results in calculated 
stability limit of the rotor at about 11.000 rpm, 
which is about one halve of available speed range. 
The rigid shaft can be eventually replaced by an 
elastic one, enabling to test running through 
bending critical speeds while controlling the shaft 
relative vibration. 

3. THEORETICAL ANALYSIS 

3.1 Bearing forces 

Outgoing from the pressure distribution in the 
bearing oil film based on the Reynold’s equation of 
hydrodynamic lubrication, the hydrodynamic 
bearing forces acting on the shaft represent in 
general a nonlinear vector function of the shaft 
position xb in the bearing and a linear function of its 
velocity: 

bbbbbH )ω ,()ω ,()ω , ,( xxBxKxxF HH && +≡    (1) 
In case of zero shaft velocity 0xb =& , when shaft 
rotates around its longitudinal axis only, for each 
angular velocity ω there is corresponding static 
equilibrium position 0xb (ω) in which the bearing 
force is in balance with outer bearing load  
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Supposing small vibrations around this equilibrium 
position 0xb   the hydrodynamic bearing force  can 
be linearized, i.e. replaced by first two terms of 
Taylor  series 
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Introducing a relative shaft displacement with 
respect to this equilibrium position 0xxy bbb −=  

and relative velocity bbbb xxxy 0
&&&& ≡−= , the 

hydrodynamic bearing force can be approximately 
replaced by relation 
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and         )ω ,)ω(()ω( bb 0xBB H−=   
are so called stiffness and damping matrices of the 
oil film in equilibrium position 0xb (ω). 
   The general nonlinear description of bearing 
forces is necessary to study rotor systems with big 
excursions of the shaft in the bearings. Unlike the 
linearized case, where sophisticated methods of 
finding stiffness and damping bearing matrices are 
known, to find the full nonlinear description of the 
field of hydrodynamic forces in the frame of the 
whole bearing clearance range remains still a 
problem. Nonlinear forces have to be determined 
numerically on the sufficiently fine net, which 
requires huge amount of calculations and data. An 
analytical formulation of nonlinear bearing forces 
can be derived only for special simplified cases of 
so-called “short” or “long” circular bearings. 
    Calculations of shaft trajectories around different 
equilibrium positions show that linear description of 
bearing forces is sufficiently accurate for greater 
part of bearing area. Only in case of great 
eccentricities of equilibrium positions approaching 
bearing clearance  the original elliptical trajectory is 
significantly deformed and shifted. 

.         Figure 3: Examples of shaft trajectories 

With respect to intended purposes of decreasing and 
shifting resonance peaks in critical speeds as well as 
for improvement of rotor stability (both mentioned 
phenomena occur in the linear range of small shaft 
displacements in the bearing) the linear description 
of hydrodynamic bearing forces is fully adequate. 
Dynamic properties of the bearings are then 
described by a sequence of stiffness and damping 
matrices defined in a net of equilibrium positions, 
which correspond (in our case) to the net of shaft 
speeds {ωj} covering the speed operating range.   



3.2 Equations of motion of the system 

    The rotor shaft itself represents a linear dynamic 
system which can be modeled with satisfactory 
accuracy using standard finite element 
discretization procedures leading to the description 
of the system by mass and stiffness matrices of the 
shaft Ms , Ks  and displacement vector x ; the sub-
vectors xk (of length 4) represent deflection and 
tilting in cross-sections of the shaft, i.e. in 
connections of two adjacent finite elements. In case 
of linearized description of hydrodynamic bearing 
forces (on condition of small shaft deflections at 
bearing locations), the static part of bearing forces 
is in balance with weight vectors of shaft and 
bearing and dynamic part is described with help of 
stiffness and damping matrices. Introducing relative 
shaft displacement vector x, where displacements 
are considered relatively to the joint line of (static) 
equilibrium position in both bearings, the complete 
rotor, oil bearing and bearing bushing system is 
described by two matrix equations, the first one for 
shaft motion, the second one for the bushings. 
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Matrices )ω(
~

bB , )ω(
~

bK  denote the shaft-system 
related matrices with bearing matrices Bp(ω), Kp(ω) 
at appropriate positions and matrix P ensures a 
linear distribution of bushing displacements along 
the shaft. 
    The excittaing forces generated by piezoactuators 
acting on bearing bushings are formally declared by 
a force vector Fa in dependence on parameters and 
shaft and bearing displacements x , xp  respectively. 
The resulting effect of these additional bearing 
excitations on rotor dynamics will strongly depend 
on their form and functional relations. Based on the 
kind and character of generated excitation such 
rotor systems can be divided into three basic 
groups: 
  a) Rotors with kinematic excitation of bushings, 
  b) Rotors with parametric excitation of bushings, 
  c) Rotors with active control of exciting forces. 
In case of kinematical excitation the exciting force 
acting on the bushings is not dependent on shaft or 
bushing deflections and represents therefore another 
external excitation which can be unlike unbalance 
exciting forces of arbitrary non-synchronous 
frequency. If the source of exciting force is 
sufficiently robust the kinematic trajectory instead 
of kinematic force can be prescribed. As will be 
shown in next chapter, kinematic excitation enables 
to change the course of response, but does not 

influence the rotor stability. 
    In both remaining cases the exciting forces acting 
on bushings are generated so, that either in 
dependence on the bearing deflections simulate 
periodically variable stiffness of bearing bushings 
(parametrical excitation) or in the appropriate 
manner respond to the deflection at specified shaft 
location (active control). Through parametrical 
excitation as well as active control both rotor 
stability and rotor response can be affected.  

3.3 Kinematic excitation of bearing bushings 

    Provided that the kinematic trajectories of 
bearing bushings are prescribed, the rotor system is 
defined by a single linear differential equation  (5) 
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As the bearing deflections xp are known the second 
term on the right side of equation represents 
(analogous to unbalance force) another exciting 
force only. As a linear system with constant 
coefficient matrices these equation can be solved by 
standard methods. The frequency and modal 
properties of the system are determined by 
corresponding eigenvalue problem  
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where Ω represents angular frequency of kinematic 
excitation, in general different from shaft angular 
frequency ω. The stability properties given by 
solution of eigenvalue characteristics are therefore 
not depend on any kind of kinematic excitation xp. 
On the other hand, the course of rotor response, as 
an envelope of time-response amplitude vectors, can 
be substantially changed and modeled by 
appropriate choice of bushing trajectory parameters. 
   Provided, that no bearing trajectory is prescribed 
but external periodic forces act on bearing bushings, 
the entire system is described by equations (5),(6) 
with exciting force )t,Ω(aF  independent of both 
rotor and bushing deflection. But this is still a linear 
system of differential equations, whose stability 
cannot be dependent neither on unbalance exciting 
forces  )t,ω(n , nor on kinematic exciting forces 

)t,Ω(aF  and the solution of which is of the same 
type as in (7). 
    All computer simulation carried out with 
different kinds and parameters of kinematic bushing 
excitation prove, that stability threshold of the 
system does not change, but significantly is 
changed steady response in which both synchronous 



and non-synchronous components, corresponding to 
unbalance forces and exciting bushing forces are 
observed. Examples of such responses in stable and 
unstable region are presented in Fig. 4 and 5. Stable 
trajectory in Fig. 4 corresponds to the shaft speed of 
5000 rpm and bushing frequency of 3000 rpm. 
Unstable trajectory of the same rotor at 8250 rpm 
and exciting bushing frequency 4125 rpm is shown 
in Fig. 5. Shaft speed 8250 rpm is close to stability 
threshold of the system without kinematic excitation 
at ≈8150 rpm. 

 
Figure 4:    Stable trajectory of the rotor 
                 with kinematicaly excited bushings 

    
Figure 5:   Unstable trajectory of the rotor 
                 with kinematicaly excited bushings    

3.4 Parametric excitation of bearing bushings 

In case of parametric excitation the external force 
Fa acting on bearing bushing has to be modeled in 
dependence on bushing deflection xp, so that it 
simulates variable stiffness of bushing mounting. 
We shall assume harmonic course of stiffness 
variation only with generally non-synchronous 
angular frequency Ω. The resulting stiffness of 
bushing mounting will be therefore of the form 

)tΩsin()tΩcos( pspcp0p KKKK ++=       (8) 

where Kpc , Kps can be arbitrary, in general non-
symmetrical matrices. Applying this variable 
bushing stiffness mounting to equations of motion 
(5), (6) we get the resulting differential equations 
formally expressed in the form 
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with constant mass and damping matrices M, B(ω)  
respectively and time-dependent periodic stiffness 
matrix K(ω,Ωt) of the analyzed dynamic system. 
The aim is to find stiffness matrices Kpc, Kps 
(containing exciting parameters) together with 
exciting frequency Ω so that all solutions of 
homogenous part of equation (9) are stable. 
   Using well known procedure, the system of linear 
differential equations of second order (9) can be 
converted into the system of differential equations 
of the first order and double dimension  
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The system matrix A(t) with dimension n is 
therefore a periodic function with period p=2π / Ω .  
As is well known from the theory of linear 
differential equations, there exists a system of n 
linear independent solutions yk(t) of equation (10), 
which can be aranged to the fundamental matrix 
Y(t) satisfying original equations 

      YAY )t(=& .                                             (11) 
Because any solution of linear differential equation 
can be expressed by a linear combination of 
functions from a fundamental system, the two 
different fundamental systems Y(t), Z(t) are 
mutually connected by relation 
     .konst    ,)t()t( =⋅= CCYZ                   (12) 

As a consequence of periodicity, the matrix Y(t+p) 
is also a fundamental system and therefore 
     YWYY ⋅=+ )t()pt(                                 (13)             
Matrix WY  is so called  ‘monodromy matrix’ and is 
determined unambiguously except for a conformity 
transformation  C-1.WY .C . The spectrum matrix S 
from modal decomposition 

     1
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is therefore identical for all monodromy matrices 



and is determined by system matrix A(t) only. On 
the basis of periodicity of the system matrix and 
modal decomposition of monodromy matrix, the 
value of functions from arbitrary fundamental 
system for t→∞ can be estimated by inequality 
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If all eigenvalues  si  of spectral matrix S lie inside 
the unit circle,  i.e. if  | si |< 1 , the right side of 
inequality (15) tends to zero and all solutions yk(t) 
are stable.  
   This criterion enables to judge the stability of the 
system with concrete numerically expressed 
elements of system matrix A(t). Corresponding 
monodromy matrix can be then determined by 
numerical integration of the system through the first 
time period 0÷p. Because the spectral properties do 
not depend on actual instance of monodromy 
matrix, it is possible to start numerical integration 
with arbitrary initial conditions; stability properties 
of the system will be determined by eigenvalues of 
the calculated monodromy matrix. However, this 
procedure is not too favorable for finding stability 
conditions of the equation (9) in dependence on a 
set of exciting parameters contained in stiffness 
matrices in formula (8). 
   To derive a more acceptable criterion we 
introduce a new fundamental system   Z(t) 

1
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With respect to (13) and (14) the system Z(t) 
satisfies 
                SZZ ⋅=+ )t()pt(                    (17) 
It holds therefore for single solutions z  j(t)  
                  z  j(t+p) = s j  z  j(t) ,                           (18)              
which a variant of well known Floquet’s theorem. 
Strictly speaking this equation is valid in case of 
mutually different eigenvalues sj . If spectral matrix 
S is of general Jordan structure with canonical 
Jordan cells on its diagonal, the equation (18) holds 
for solutions zj(t), which correspond the first 
members in Jordan cells only. But this fact does not 
mean any restriction, because the stability depends 
purely on eigenvalues sj and other solutions are not 
interesting for stability purposes. The number m of  
unequal eigenvalues sj and linear independent 
solutions zj(t) satisfying Floquet’s formula (18) is 
less or equal to the number of Jordan cells in 
spectral decomposition of monodromy matrix.  
Defining characteristic exponents ∝k by formula  
                   )pαexp(s kk = ,                             (19)  

the function   

                   )t(e)t( tαk
kk zq −=                         (20)   

is a periodic function with period p and satisfies 
differential equation 
                  kqIAq  )α)t(( kk −=& .                  (21) 

If we define -analogous to eigenvalue problem  with 
constant matrix A-  a characteristic problem of 
periodic solutions for periodic matrices A(t)  
                 qAq  )α)t(( −=& ,                           (22) 
it follows from above derived relations, that for this 
problem  exist exactly m  characteristic values ∝k 
(and corresponding periodic functions qk(t) ). The 
numbers )pαexp(s kk =  are at the same time 

eigenvalues of the system monodromy matrix. 
Therefore, the original system of differential 
equations (11) is stable if all its characteristics 
exponents ∝k have negative real part:  
                  Re(∝k)< 0,    k=1,..,m.                      (23)   
There is a certain similarity between stability 
conditions of systems of linear differential 
equations with constant coefficients and systems 
with periodic coefficients: in case of constant 
matrix A for all eigenvalues λk  conditions Re(λk)< 
0 must be satisfied,  in case of periodic matrix A(t) 
conditions Re(αk)< 0 for all characteristic exponent 
αk must be satisfied.  
   To find periodic solution of characteristic problem 
(22), the Fourier series expansion can be used. This 
technique leads in general to the solution of 
eigenvalue problems with matrix of infinite 
dimension. But in our case of matrix A(t) containing 
members with cos(Ωt)  and  sin(Ωt) components 
only, we limit the solution for technical purposes on 
the first three members of Fourier series  
     )tΩsin()tΩcos( )t( Sqqqq C0 ++≈ .      (24)       

Substitution of this expression to the characteristic 
problem (22) leads to the eigenvalue problem for 
calculation of characteristic exponents αk 
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The definition formula of matrix A
~

 is therefore a 
little complicated and for analysis as well as 
calculations some simplification is desirable. 
Outgoing from formulation of the system equations 
(10), dynamical properties of the original rotor 



without parametric excitation are determined by 
modal characteristics of the system 
                                  .yAy 0=&                           (27) 

Denoting ΛΛΛΛ0 diagonal matrix of complex 
eigenvalues and V0 modal matrix of corresponding 
left-hand eigenvectors of non-excited system, the 
eigenvalue problem (26) for characteristic 
exponents αk  can be transformed to the equivalent 
eigenvalue problem expressed in  modal coordinates 
generated by matrix V0. In these coordinates the 

matrix  A
~

 has a more transparent form 
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In this expression the terms of type CC ADA
~~

λ
 

represent contributions of exciting parameters on 
resulting characteristic exponents. Regarding the 
lay-out of original eigenvalues of non-excited 
system on the matrix diagonal, the form of this 
matrix is efficient for numerical processing. With 
respect to the higher number of freedom of the 
original system and therefore higher dimension of 

matrix A
~

, the eigenvalue and stability problems 
cannot be solved analytically. That is why finding 
and analyzing relations among parameters of 
external parametric excitation guaranteeing rotor 
stability will not be an easy problem.    

4. CONCLUSIONS 

Test stand was designed and manufactured to 
study possibilities to affect dynamics of rotors 
supported in hydrodynamic journal bearings by 
means of external excitation, The stand enables to 
achieve speeds more than 20000 rpm and to act on 
both bearings by arbitrary excitation force in two 
directions. Performed theoretical study provided 
some means for prediction of excitation mode on 
the rotor behavior. It was shown, that kinematic 
excitation can affect amplitudes of vibration but not 
the stability limit. To suppress rotor instability will 
apparently require use of more sophisticated 
excitation modes realized through piezoactutor 
control. 
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