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ABSTRACT

The paper deals with rotor instability, which is | — ‘ \
encountered with rotors supported in sliding
bearings. Possibilities to suppress instability by
external excitation will be studied both theoreliga
and experimentally. The test stand enabling bearing
bushing excitation by piezoactuators was designec
and manufactured. Theoretical study of kinematic e
excitation influence on rotor behavior was carried 1
out and some calculated results are shown. Strateg) — =
of further proceedings is outlined. /1] — [t
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1. INTRODUCTION

With increasing speed of rotating machines
problems with instability of rotor became more and
more serious. The instability termed as “oil whirl”
is caused by tangential component of hydrodynamic
force occurring in narrow gaps of sliding bearings
or labyrinth seals. Rotor instability is a very
dangerous phenomenon, because the rotor vibrates
with very high amplitudes reaching practically the S ‘/
whole of bearing clearance. Means for suppression /

\

of instability consist in changing conditions ineth
hydrodynamic film (specific load, oil inlet
temperature), changing geometry of bearing gap or
using additional damping (two oil films in series).
However, in some cases the above-mentioned Figure 2: Crossl section of test stand
methods are not effective and it is necessarydk lo
for more sophisticated methods of rotor
stabilization.
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Test stand should enable running of the rotor up to
its stability limit so that the effect of active rdool
could be investigated. Bearing diameter of 30 mm
permits to design the rotor as rigid. The basehef t
2. EXPERIMENTAL TEST STAND stand is constituted by the framecbmposed of
aluminous profiles. Driving motor clamping plane 2
Some articles were published on the subject ofs fastened to the frame by screws. 18igh
quenching of self-excited vibrations by means offrequency motor_3fixed in clamping plane ,2is
kinematic excitation, eg. Tondl (2005). This methodconnected to the test shaftby elastic coupling 6
was up to now used only for simple mechanicalwhich is connected with the motor by short pin 15
systems. External excitation of rolling bearingsswa and collet 8 Using the collet was necessary because
used for reducing vibration amplitudes of aerothe only available high speed motor for speedsoup t
engine rotors. However, no information is available20.000 rpm is manufactured for drilling spindles.
about using external excitation for suppression ofthe motor is supplied by high-frequency current
the rotor self-exciting vibrations. To investigatés  converter, enabling speed control by computer. The
possibility experimental stand was designed anclastic coupling is of the multi-plate type. It
manufactured (see Fig. 1 and 2). constitutes two joints, thus separating the shafnf



motor drive. Bearing pedestals dontain bearing oK
bushings, inserted into pedestals with clearanze, swhere K (w)=- ™ (Xpo(@),0) (4)

that they can move. The bearing bushings are d B B

connected by means of screw bars to piezoactuatof p(@)==By (Xpo(@),)

12. Two vertically and two horizontally arranged are so called stiffness and damping matrices of the
piezoactuators enable excitation of both bearingil film in equilibrium position X, ().

bushings Dby practically arbitrary force. The The general nonlinear description of bearing
piezoactuators are secured in frames &ifl 14  forces is necessary to study rotor systems with big
respectively, which are fastened to the stand basgxcursions of the shaft in the bearings. Unlike the
Piezoactuators have maximum deviation ofu®®  |inearized case, where sophisticated methods of
maximum force in tension/pressure 800/300 N.finding stiffness and damping bearing matrices are
Four relative vibration sensors Eve mounted in  ynown, to find the full nonlinear description ofeth
carriers_9 fastened to bearing pedestals to followfig|q of hydrodynamic forces in the frame of the
the rotor deviations. _ . whole bearing clearance range remains still a
The bearings are of circular cross section.prohlem. Nonlinear forces have to be determined
Selected bearing clearance results in calculateumerically on the sufficiently fine net, which
stability limit of the rotor at about 11.000 rpm, requires huge amount of calculations and data. An
which is about one halve of available speed rangeanalytical formulation of nonlinear bearing forces
The rigid shait can be eventually replaced by arcan be derived only for special simplified cases of
elastic one, enabling to test running throughso.called “short” or “long” circular bearings.
bending critical speeds while controlling the shaft  cgjculations of shaft trajectories around diffe

relative vibration. equilibrium positions show that linear descriptifn
bearing forces is sufficiently accurate for greater
3. THEORETICAL ANALYSIS part of bearing area. Only in case of great

eccentricities of equilibrium positions approaching
) bearing clearance the original elliptical trajegts
3.1 Bearing forces significantly deformed and shifted.

Outgoing from the pressure distribution in the
bearing oil film based on the Reynold’s equation of
hydrodynamic lubrication, the hydrodynamic
bearing forces acting on the shaft represent ir
general a nonlinear vector function of the shaft |,
positionxy in the bearing and a linear function of its  {
velocity:

Fru(Xp Xy ,0) =Ky (Xy,0)+ By (X,,0)%, (1)

In case of zero shaft velocitx, =0, when shaft
rotates around its longitudinal axis only, for each
angular velocityw there is corresponding static
equilibrium position x,, (w) in which the bearing
force is in balance with outer bearing load

-Qp =F (Xpg,0,0) =K (Xpg,@) (2)
Supposing small vibrations around this equilibrium-
position x,, the hydrodynamic bearing force can With respect to intended purposes of decreasing and

be linearized, i.e. replaced by first two terms ofShifting resonance peaks in critical speeds asagell
Taylor series for improvement of rotor stability (both mentioned
o (X, %0 ,0)= Ko (X0 0)+ phenomena occur in the linear range of small shaft
HA b %bo HA %bo» displacements in the bearing) the linear descriptio
oK ,, . (3)  of hydrodynamic bearing forces is fully adequate.
» {Xp = Xpg ) + By (Xp0,@)X, Dynamic properties of the bearings are then
Introducing a relative shaft displacement with ?neast(r:irég(sad dg%{ng dS‘iar?L;eﬂce:(? gff sggirllite)fii rﬁngogi%gqr?smg
respect to _thls equmb_ru'Jm posﬁ@yb B _Xb Xbo  \yhich correspond (in our case) to the net of shaft
and relative velocity, =X, — X, =X,, the  speeds ¢y} covering the speed operating range.
hydrodynamic bearing force can be approximately
replaced by relation

Fr(Xp,Xp,0)=-Q, ~Ky(@)y, = By(w)Y,,

eccentricity 70% eccentricity 90%6

Figure 3 Examples of shaft trajectories
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. : influence the rotor stability.
3.2 Equations of motion of the system In both remaining cases the exciting forcemgct

The rotor shaft itself represents a linear dyica On bushings are generated so, that either in
system which can be modeled with satisfactorydependence on the bearing deflections simulate
accuracy using standard  finite  elementperiodically variable stiffness of bearing bushings
discretization procedures leading to the descriptio (Parametrical excitation) or in the appropriate
of the system by mass and stiffness matrices of thexanner respond to the deflection at specified shaft
shaftMs , Ks and displacement vectar; the sub- location (active control). Through parametrical

vectors X (of length 4) represent deflection and €xcitation as well as active control both rotor
titing in cross-sections of the shaft, ie. in stability and rotor response can be affected.
connections of two adjacent finite elements. Inecas 3 3 Kinematic excitation of bearing bushings
of linearized description of hydrodynamic bearing _ _ _ _ _
forces (on condition of small shaft deflections at Provided that the kinematic trajectories of
bearing locations), the static part of bearing ésrc bearing bushings are prescribed, the rotor system i
is in balance with weight vectors of shaft anddefined by a single linear differential equatids) (
bearing and dynamic part is described with help of\y « +(wG +B % +(K_+K X =
stiffness and damping matrices. Introducing re&ativ _ (o b(.w ) ( S (@) .
. : =n(w,t)-(MP X, +wGPX )
shaft displacement vectot, where displacements _ P P
are considered relatively to the joint line of fsta A the bearing deflectiong, are known the second
equilibrium position in both bearings, the completeterm on the right side of equation represents
rotor, oil bearing and bearing bushing system is@nalogous to unbalance force) another exciting
described by two matrix equations, the first one fo force only. As a linear system with constant
shaft motion, the second one for the bushings. coefficient matrices these equation can be solyed b
. = ) ~ _ standard methods. The frequency and modal
M X +(0G +Bp(w))X + (K +Ky(w))x= (5)  properties of the system are determined by
=n(w,t)-(MP X, +wGPX, ) corresponding eigenvalue problem
M, %, +B %, +K X, = S(Lw)x=
(6) PM +1(0G+B +(K, +K X=0
= Fo (L, X, X )+ By(@) %, + Ky (@)%, ( (0 +By(w)) +(Ks +Ky(w)))x =
_ P while time-response amplitudes are given by
Matrices B, (w),K,(w) denote the shaft-system (g|ation
related matrices with bearing matridggw), Kp(w) x(t)= Rds—l(iw,w)ﬁwzeiwt}_
at appropriate positions and matriX ensures a A, 2 : - ”Qt} (7
linear distribution of bushing displacements along ~ RS (12,0 )( - 2"MP +iQuGP)x ;e
the shatft. whereQ represents angular frequency of kinematic
The excittaing forces generated by piezoactsato excitation, in general different from shaft angular
acting on bearing bushings are formally declared byrequency w. The stability properties given by
a force vectolF, in dependence on parameters andsolution of eigenvalue characteristics are theeefor
shaft and bearing displacemenrtsx, respectively. not depend on any kind of kinematic excitatiqn
The resulting effect of these additional bearingOn the other hand, the course of rotor response, as
excitations on rotor dynamics will strongly dependan envelope of time-response amplitude vectors, can
on their form and functional relations. Based om th be substantially changed and modeled by
kind and character of generated excitation suclappropriate choice of bushing trajectory parameters
rotor systems can be divided into three basic Provided, that no bearing trajectory is presib
groups: but external periodic forces act on bearing busing
a) Rotors with kinematic excitation of bushings, the entire system is described by equations (5),(6)
b) Rotors with parametric excitation of bushings, with exciting force F,(2,t) independent of both
c) Rotors with active control of exciting forces. rotor and bushing deflection. But this is stillirelar
In case of kinematical excitation the exciting forc system of differential equations, whose stability
acting on the bushings is not dependent on shaft arannot be dependent neither on unbalance exciting
bushing deflections and represents therefore anothdéorces n(w,t) , nor on kinematic exciting forces
external excitation which can be unlike unbalancer_(,t) and the solution of which is of the same
exciting forces of arbitrary non-synchronous :
frequency. If the source of exciting force is type as in (7). . . : :
uency. : : : : All computer simulation carried out with
sufficiently robust the kinematic trajectory inslea . - - - -
. : . ; different kinds and parameters of kinematic bushing
of kinematic force can be prescribed. As will be _ = .
: : : o excitation prove, that stability threshold of the
shown in next chapter, kinematic excitation enable% stem does not change, but significantly is
to change the course of response, but does n t?\;anged steady response in which both synchronous



and non-synchronous components, corresponding t8.4 Parametric excitation of bearing bushings
unbalance forces and exciting bushing forces are . o
observed. Examples of such responses in stable and !N case of parametric excitation the external force
unstable region are presented in Fig. 4 and 5l&tabFa acting on bearing bushing has to be modeled in
trajectory in Fig. 4 corresponds to the shaft spefed dependence on bushing deflectiap so that it
5000 rpm and bushing frequency of 3000 rpm.Simulates variable stiffness of bushing mounting.
Unstable trajectory of the same rotor at 8250 rpmiVe shall assume harmonic course of stiffness
and exciting bushing frequency 4125 rpm is showrvariation only with generally non-synchronous
in Fig. 5. Shaft speed 8250 rpm is close to stgbili angular frequency®. The resulting stiffness of
threshold of the system without kinematic excitatio bushing mounting will be therefore of the form
at=8150 rpm. K, =K, +K, cos@t)+K sin(Qt) (8)

15 rew. S0 resw.

where K¢ , Kps can be arbitrary, in general non-

symmetrical matrices. Applying this variable

bushing stiffness mounting to equations of motion
(5), (6) we get the resulting differential equason

formally expressed in the form

MX +B(w)Xx+(Ky(w)+K_ cos(@t)+ )

+ K sin(Qt))x = f(wt)
with constant mass and damping matritesB(w)
respectively and time-dependent periodic stiffness
matrix K(w,«X) of the analyzed dynamic system.
The aim is to find stiffness matricely, Kps
(containing exciting parameters) together with
exciting frequencyQ so that all solutions of
homogenous part of equation (9) are stable.

Using well known procedure, the system of linear
differential equations of second order (9) can be
converted into the system of differential equations
of the first order and double dimension

Figure 4: Stable trajectory of the rotor y=A(t)y, , (10)
with kinematicaly excited bushings A(t)= A, + A. cos(@t) + Agsin(2t)
The system matrixA(t) with dimension n is
therefore a periodic function with peripe277/ Q.
As is well known from the theory of linear
200 rev. differential equations, there exists a systemnof
linear independent solutiong(t) of equation (10),
which can be aranged to the fundamentetrix
Y(t) satisfying original equations
Y = A(t)Y . (11)
Because any solution of linear differential equatio
can be expressed by a linear combination of
functions from a fundamental system, the two
different fundamental systemsr(t), Z(t) are
mutually connected by relation
Z(t)=Y(t)[C, C=konst (12)
As a consequence of periodicity, the ma¥¥it+p)
is also a fundamental system and therefore

Y(t+p)=Y(1)IW, (13)
Matrix Wy is so called ‘monodromy matrix’ and is
determined unambiguously except for a conformity

transformation C1.Wy .C . The spectrum matri$
from modal decomposition

Figure 5: Unstable trajectory of the rotor w, =V, (BIV,* (14)
with kinematicaly excited bushings is therefore identical for all monodromy matrices




and is determined by system matAxt) only. On is a periodic function with periogp and satisfies
the basis of periodicity of the system matrix anddifferential equation
modal decomposition of monodromy matrix, the y = _
value of functions from arbitrary fundamental , G = (A1)~ eyl _)qk' (21) ,
system fott - o can be estimated by inequality If we define -analogous to eigenvalue problem with
; ; constant matrixA- a characteristic problem of
= + <

“m““’”Y(t )” !nllkﬁ.”Y(to Skkp)gz (15)  periodic solutions for periodic matricégt)

o =KOm sk, T a=(At)-a)q, (22)
If all eigenvaluess of spectral matriS lie inside it follows from above derived relations, that fbist

the unit circle, Le.if|s <1, the right side of problem exist exactlyn characteristic valuesi

glreez)qsutzlllj%.(15) tends to zero and all solutighét) (and corresponding periodic functioggt) ). The

This criterion enables to judge the stabilitytiug ~ NUMbErs s, =exp(a,p) are at the same time
system with concrete numerically expressedeigenvalues of the system monodromy matrix.
elements of system matriA(t). Corresponding Therefore, the original system of differential

monodromy matrix can be then determined byequations (11) is stable if all its characteristics
numerical integration of the system through thst fir exponents], have negative real part:

time period &p. Because the spectral properties do _

not depend on actual instance of monodromy . Reéf)< 0 k—lm (23)__
matrix, it is possible to start numerical integoati 1h€re is a certain similarity between stability
with arbitrary initial conditions; stability propges ~ conditions of systems of linear differential
of the system will be determined by eigenvalues ofequations with constant coefficients and systems
the calculated monodromy matrix. However, thiswith periodic coefficients: in case of constant

procedure is not too favorable for finding stagilit matrix A for all eigenvalued conditions ReX)<

conditions of the equation (9) in dependence on & must be satisfied, in case of periodic maki®

ﬁqe;tr%ces )l(: |]Egr1r?nu[?§r%r)rleters contained in St'ffnessconditions Red )< O for all characteristic exponent

To derive a more acceptable criterion weQk Mustbe satisfied. o
iniroduce a new fundamental sySteZ() (22). the Fourer series expansion can be used. Thi
_ _ o , uri ies expansi used. Thi
Z(t)_Y(t)WY’ Wy =Vy [BV, . (16) technique leads in general to the solution of
With respect to (13) and (14) the systefiit)  ejgenvalue problems with matrix of infinite

satisfies dimension. But in our case of matét) containing
Z(t+p)=Z(1)[S (17) members withcos() and sin(X) components

It holds therefore for single solutioms(t) only, we limit the solution for technical purposss
zi(t+p) =sj z (1), (18) the first three members of Fourier series

which a variant of well known Floquet's theorem.  q(t)=(q, +q. cOS(Qt)+qsSin(2t). (24)

Strictly sp(_aaklng th_|s equation is valid in case OfSubstitution of this expression to the characterist
mutually different eigenvalues . If spectral matrix

S is of general Jordan structure with canonicalprObIem (22) leads to the eigenvalue problem for

Jordan cells on its diagonal, the equation (18)i&iol calculation of characteristic exponents

for solutions z(t), which correspond the first (A-al ) =0 (25)

members in Jorda_n cells only. But this f?.?t doés noyyith matrix A given by formula

mean any restriction, because the stability depends_ 1

purely on eigenvalues and other solutions are not A= A; —=( A A,Q 'A. + AJAQAL)

interesting for stability purposes. The numbenof QZ

unequal eigenvalues; nd linear independent - (A.Q'A, -AQ'AL), (26)

solutions z(t) satisfying Floquet's formula (18) is . 2 )

less or equal to the number of Jordan cells inQ= Ay +Q71. B

spectral decomposition of monodromy matrix. The definition formula of matrixA is therefore a

Defining characteristic exponents by formula little complicated and for analysis as well as
s, =exp(, p). (19) calculations some simplification is desirable.

Outgoing from formulation of the system equations

the function (10), dynamical properties of the original rotor

q(t) =e“'z(t) (20)
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In this expression the terms of typA.D, A,

represent contributions of exciting parameters on
resulting characteristic exponents. Regarding the
lay-out of original eigenvalues of non-excited

system on the matrix diagonal, the form of this
matrix is efficient for numerical processing. With

respect to the higher number of freedom of the
original system and therefore higher dimension of

matrix A, the eigenvalue and stability problems
cannot be solved analytically. That is why finding
and analyzing relations among parameters of
external parametric excitation guaranteeing rotor
stability will not be an easy problem.

4. CONCLUSIONS

Test stand was designed and manufactured to
study possibilities to affect dynamics of rotors
supported in hydrodynamic journal bearings by
means of external excitation, The stand enables to
achieve speeds more than 20000 rpm and to act on
both bearings by arbitrary excitation force in two
directions. Performed theoretical study provided
some means for prediction of excitation mode on
the rotor behavior. It was shown, that kinematic
excitation can affect amplitudes of vibration bot n
the stability limit. To suppress rotor instabiliill
apparently require use of more sophisticated
excitation modes realized through piezoactutor
control.



