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ABSTRACT

The pressure and velocity fields in coronal
plane along the vibrating vocal folds were stud-
ied using a finite element mathematical model.
The shapes of the vocal folds were specified ac-
cording to data measured on excised human la-
rynges in phonation position. The mathemati-
cal model of the flow is based on 2D incompress-
ible Navier-Stokes equations adapted to deal with
the time-variable shape of the domain, caused by
vocal fold vibration. The numerical simulations
allow to observe closely various flow features re-
lated to phonation - flow separation in the glottis,
Coanda effect or vortex shedding.

The numerical results were verified experimen-
tally by Particle Image Velocimetry (PIV) on a
physical vocal fold model. In addition to acoustic,
subglottal pressure and impact intensity measure-
ments, flow velocity fields were recorded in the do-
main immediately above glottis. Analysis of the
PIV images taken within 25 phases of one vibra-
tion cycle gives good insight into the dynamics of
the supraglottal flow.

1. INTRODUCTION

Human voice is created by passage of the air-
flow between vocal folds, which are located in the
upper part of larynx. The vocal folds (formerly
called vocal cords) are two symmetric soft tis-
sue structures fixed between the thyroid cartilage
and arytenoid cartilages (which are paired); ba-
sically they are composed of the thyroarytenoid
(TA) muscle and ligament covered by mucosa.

When air is expired from lungs, the constric-
tion formed by the vocal folds (which is called
glottis) induces acceleration of the flow; under
certain circumstances (subglottal pressure, glot-
tal width, longitudinal tension in the TA and

ligament) the fluid-structure interaction may in-
voke vocal fold oscillations. It is important that
the vibration is a passive process – when voic-
ing, people do not perform any sort of periodic
muscle contraction, they only adjust the initial
configuration and let the vocal folds vibrate by
the airflow.

The flow is modeled by incompressible non-
stationary Navier-Stokes equations in 2D, solved
by the finite element method (FEM). The Navier-
Stokes equations were first reformulated in arbi-
trary Lagrangian-Eulerian (ALE) approach. The
Navier-Stokes equations are nonlinear; this is
why it was necessary to use a suitable lineariza-
tion of the convective term. The geometry of
the problem, i.e. the 2D shape of the vocal folds
and adjoining vocal tract, was specified accord-
ing to measurements on excised human larynges,
performed in the Institute of Thermomechanics
(Šidlof et al, 2004).

The results from the mathematical models
should always be verified using experimental
data. Since the human vocal folds are hardly
accessible, the majority of processes occurring
during phonation cannot be measured directly
in vivo. This is why many physical vocal fold
models with well-defined and easily controllable
parameters have been developed in recent years
– like the self-oscillating latex-tube model of De-
verge et al (2003), the driven scaled models of
Kob et al (2005); Erath et al (2006) or the self-
oscillating 1:1 vocal fold model of Thomson et al
(2005).

Investigation of the supraglottal flow velocity
field represents one of the cases, where both in
vivo and in vitro measurements are hardly re-
alizable. Therefore a self-vibrating mechanical
model of human vocal folds was designed and fab-
ricated at ENSTA Paris. The principal goal was



to study the conditions, where flow-induced vi-
brations of vocal folds occur and to investigate
the velocity fields in the supraglottal channel im-
mediately upstream the narrowest glottal gap by
means of Particle Image Velocimetry (PIV).

2. MATHEMATICAL MODEL

Let Ωt ⊂ R
2 be the (time-variable) domain occu-

pied by the fluid. The boundary Γ = ∂Ω is com-
posed of four non-intersecting parts (see Fig. 1):
Γ = Γin ∪Γout ∪Γwall ∪ΓV F , where Γin and Γout

are virtual boundaries representing the inlet and
outlet, Γwall = Γb1

wall ∪ Γb2
wall ∪ Γu1

wall ∪ Γu2
wall is the

fixed wall, which is not a function of time, and
ΓV F = Γb

V F ∪ Γu
V F stands for the surface of the

moving vocal folds. The superscripts ’b’ and ’u’
denote the bottom and upper parts, respectively.
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Figure 1: Sketch of the computational domain
and definition of its boundary parts.

Our goal is to find the flow velocity u(t, x),
kinematic pressure p(t, x) and generalized coor-
dinates of the bottom and upper vocal folds qb

i (t),
qu
j (t), t ∈ (0, T ), x ∈ Ωt.

Since the Eulerian time derivative ∂/∂t is not
well defined in a time-dependent computational
domain Ωt, the standard, Eulerian form of the
Navier-Stokes equations is not suitable for de-
scription of the flow in a domain that deforms
in time. Therefore it will be reformulated using
arbitrary Lagrangian-Eulerian approach.

The ALE-formulation of the Navier-Stokes
equations reads

DA

Dt
u +

[
(u − w) · ∇

]
u + ∇p − ν ∆u = 0

div u = 0 ,(1)

where w is the domain velocity (velocity of the

meshpoints) and DA

Dt
is so-called ALE-derivative,

which can be easily discretized even in time-
dependent computational domains.

Setting the boundary conditions represents a
rather delicate question. On the outlet Γout,
one possible choice is the “do-nothing condition”
(Turek, 1999)

−ν
∂u

∂n
(t, x) + p(t, x) n(x) = pref n(x)

for x ∈ Γout, t ∈ [0, T ] , (2)

where ∂/∂n denotes the normal derivative,
n(x) is the unit outer normal to Γout and pref

is the reference pressure. In certain cases, how-
ever, this condition becomes too vague – it does
not even prevent the flow returning to the do-
main Ω through Γout. Thus, the total influx into
the domain Ω can grow infinite and the numer-
ical scheme tends to diverge. To suppress this
inconvenience, the boundary condition (2) can
be slightly modified during the derivation of the
weak formulation of the equations.

On the inlet Γin, two conditions were tested:
either a parabolic profile of the vertical veloc-
ity component, or the (modified) do-nothing con-
dition as on Γout. The difference pin

ref − pout
ref

then represents the transglottal pressure (ap-
proximately equal to the lung pressure during
phonation), which drives the flow.

Since we use a viscous model, the “no-slip con-
dition” is prescribed on the fixed walls Γwall. On
the moving vocal fold surfaces, the velocity of the
fluid particles must be equal to the velocity of the
moving surface, which is given by the domain ve-
locity w.

For the numerical solution of the Navier-Stokes
equations (1), these need first to be semidis-
cretized in time. A constant timestep τ was used.
Let us define the discrete time level ti = i τ and
the approximate flow velocity, pressure and do-
main velocity on this time level ui(x) ≈ u(ti, x),
pi(x) ≈ p(ti, x) wi(x) ≈ w(ti, x), x ∈ Ωti . If we
denote the ALE-maps of the reference point X on
the three time levels involved xn+1 = Atn+1

(X),

xn = Atn(X), xn−1 = Atn−1
(X), the ALE-

derivative can be approximated by the formula

DAu

Dt
(tn+1, xn+1) ≈

=
3 un+1(xn+1) − 4 un

(
Atn

(
A−1

tn+1
(xn+1)

))

2 τ
+

un−1
(
Atn−1

(
A−1

tn+1
(xn+1)

))

2 τ
. (3)

Provided that the ALE-mappings on time
levels tn+1, tn and tn−1 are known, the fi-
nite difference (3) is well-defined on Ωtn+1

.

When we introduce the notation û
i(xn+1) =

ui
(
Ati

(
A−1

tn+1
(xn+1)

))
, by substituting (3) into



(1) we get the semidiscrete Navier-Stokes equa-
tions for the functions un+1 : Ωtn+1

7→ R
2 and

pn+1 : Ωtn+1
7→ R :

3 un+1

2 τ
+

[
(un+1

− wn+1) · ∇
]
un+1+

+∇pn+1
− ν ∆un+1 =

4 û
n
− û

n−1

2 τ
div un+1 = 0 . (4)

Due to the presence of the convective term[
(un+1

− wn+1) · ∇
]
un+1 in the Navier-Stokes

equations (4), the system cannot be solved in a
straightforward way. Instead, it is first necessary
to linearize the equations, i.e. to replace the first
occurrence of the sought velocity vector un+1 by
some vector u∗, which is already known. Within
this work, Oseen iteration process was used.

The starting point for the finite element dis-
cretization of any system of partial differential
equations is its weak (variational) formulation.
It is obtained by multiplying the classical formu-
lation (4) by an arbitrary test function from the
relevant space and integrating over Ω.

To find an approximate solution of the semidis-
crete weak Navier-Stokes equations, the finite ele-
ment method was used. The unstructured, adap-
tively refined mesh composed of 4000 to 16000
triangular elements. For the velocity and pres-
sure test functions and for the solution, P k+1/P k

elements were chosen (P2/P1 and P3/P2 tested).
The numerical solution of the discretized problem
was implemented using an open-source library
Mélina (Martin, 2006), the resulting linear sys-
tem is solved with the aid of a powerful direct
linear solver UMFPACK (Davis, 2006).

For the structural part of the problem, the real,
continuously elastic vocal fold was modeled by a
rigid body supported by two springs and dampers
(similarly as in previous works of Horáček et al
(2005)). Such kinematic model reflects two basic
modes of the vocal fold motion: vertical shift and
rotation. Is is not difficult to derive the equations
of motion of the system in the standard form

M q̈ + B q̇ + K q = F , (5)

where M, B, K are the mass, damping and stiff-
ness matrices, q denotes the vector of general-
ized coordinates (shift and rotation) and F =
(Ff , Mf )T stands for the vector of generalized
forces (vertical force and momentum), induced
on the boundary ΓV F by the flow.

The full coupled problem can be solved in the
following procedure: Assuming that the solution

of the Navier-Stokes equations (1) on a specific
time level t and domain Ωt is known, the total
vertical force Ff and momentum Mf , by which
the fluid acts on the bottom vocal fold, is given
by the integration of the stress vector τ :

Ff =

∫

Γb

V F

τ2 dσ =

∫

Γb

V F

2∑

j=1

T2j nj dσ , (6)

Mf =

∫

Γb

V F

2∑

l=1

(
T1l nl x2 − T2l nl x1

)
dσ .(7)

Here T is the stress tensor and n the unit outer
normal to the vocal fold surface. The stress ten-
sor T is calculated from the pressure and velocity
fields p(t, x) and u(t, x) on time level t, according
to the constitutive relation valid for Newtonian
fluids.

Once the excitation forces are known, we can
proceed to the next time level t + τ by perform-
ing one step of the Runge-Kutta method in the
time-discretized equations of motion. In this way,
we get new system coordinates. These coordi-
nates uniquely determine the shape of the do-
main Ωt+τ . With the knowledge of the solution
from the previous two time levels, the Navier-
Stokes equations can be solved on the new time
level t + τ and new domain Ωt+τ using the finite
element method.

3. PHYSICAL MODEL

The physical model was proposed as a vocal-
fold-shaped element vibrating in the rectangular
channel wall. A 4:1 scaled vocal fold model, os-
cillating only due to coupling with airflow, was
designed. In current setup, the upper vocal fold
is fixed to avoid difficulties with unsymmetric vo-
cal fold vibration, the bottom one is supported by
four flat springs. Best possible effort was made to
keep the important dimensionless characteristics
(Reynolds and Strouhal numbers) of the model
close to the real situation. The shape of the vo-
cal folds was specified according to measurements
on excised human larynges, performed in the In-
stitute of Thermomechanics (Šidlof et al, 2004).

The vocal fold model was mounted into a plexi-
glass wind tunnel. In addition to the PIV system
installed to measure the supraglottal flow field,
the model was also equipped with accelerome-
ters, pressure transducers and microphones to
measure and record vocal fold vibration.



To measure the mean flow in the channel,
an ultrasonic flowmeter was mounted near the
downstream end of the circular channel. Two
accelerometers, fixed under the vibrating vocal
fold, were used to record mechanical vibration.
The 1:4 scale of the model allowed to use the rel-
atively large, but very sensitive type B&K 4507C
without affecting the system significantly.

4. RESULTS

During the numerical simulations, the develop-
ment of flow and pressure fields for different in-
put flow velocities (or transglottal pressure differ-
ences) have been studied. The simulations show
the development of the supraglottal jet and evo-
lution of the recirculation vortices within several
vocal fold oscillation cycles. The nonstabilized
finite element scheme implemented, with a mesh
constisting of 16000 triangular P3/P2 elements,
allows to reach Reynolds numbers of about 5000,
which is sufficient to model the values observed
in real human vocal folds.

Figs. 2, 3 demonstrate sample results calcu-
lated within a numerical simulation with pre-
scribed parabolic profile of the horizontal veloc-
ity component at inlet Γin (with a maximum of
U0 = 0.25m/s). The channel geometry is the
same as for the physical model. The mesh was
triangular and consisted of 16537 Taylor-Hood
(P 3/P 2) elements. The upper vocal fold was
fixed, the motion of the bottom one was driven
(with no collisions).

The physical model and the measuring equip-
ment mounted provided vibroacoustic data (ac-
celeration signal, dynamic subglottal and supra-
glottal pressure, acoustic output) and 2D supra-
glottal flow fields recorded by the PIV.

Fig. 4 shows the measured waveforms and their
spectra for a flow rate Q = 8.58 l/s, where
regular vibrations with impacts occur.

An extensive series of PIV measurements was
performed on the vibrating vocal fold model.
The flow rate was gradually increased from Q =
5.33 l/s (measurement No.001) to Q = 25.61 l/s
(measurement No.044). Within each of the 44
measurements, approximately 25 PIV records,
corresponding to 25 distinct phases of the vocal
fold oscillation cycle, were taken. This was real-
ized using the synchronization signal (accelerom-
eter signal converted to TTL) and the time-delay
function of the laser control software. Each PIV
record consisted of ten PIV measurements of the
same phase within ten successive vibration cy-
cles.

Fig. 5 demonstrates the results of one sample
measurement (out of 44 in total). This mea-
surement was chosen as a representative case of
medium flow rate, large-amplitude regular oscil-
lations, which subjectively correspond the best
to normal voice production.

It can be stated that the flow is not perfectly
periodical in general. The turbulent structures,
developing mainly due to presence of the bound-
ary layer of the jet, interact mutually and with
the jet in a disordered, stochastic way; this is
why the flow fields of the same phase in succes-
sive oscillation cycles are not necessarily identi-
cal. The important flow structures, however, are
generated periodically in accordance with the fre-
quency of vibration: within each oscillation cycle,
a new jet is created with one pair of large vortices
propagating along the jet front. The jet attaches
to the channel wall and during the closing phase
it fades away and eventually disappears, leaving
the turbulence to damp out.

5. DISCUSSION

Neither the mathematical nor the physical model
was primarily intended for direct comparison
with real human vocal folds. The strategy was
first to validate the mathematical model using
results of the PIV measurements on the phys-
ical model; once a satisfactory correspondence
between the computational and physical models
will be achieved, the geometry and boundary con-
ditions of the mathematical model can be modi-
fied in order to reflect the conditions occurring in
real vocal folds. For the validation of the model,
it was advantageous to use the configuration with
one vocal fold moving and the other fixed.

The results from the mathematical and phys-
ical model obtained so far seem to correspond
when compared visually. It should be noted that
there are some aspects, which make a system-
atic comparison difficult for the time being – the
main limitation is the fact that within the math-
ematical model, the vocal folds are not allowed to
collide. The processes accompanying glottal clo-
sure are complex and from the algorithmic point
of view, the separation of the computational do-
main into two, necessity to introduce additional
boundary conditions and to handle pressure dis-
continuity when reconnecting the domains rep-
resent a very complicated problem. Yet it will
be necessary to deal with this task in future, if
the mathematical model should be employed to
model regular loud phonation.



Figure 2: Sample velocity field during the vocal fold vibration cycle – velocity magnitude [m/s].

Figure 3: Sample pressure field during the vocal fold vibration cycle - dynamic pressure [Pa].
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Figure 4: Waveforms and frequency spectra of the acceleration, and supraglottal pressure. Measure-
ment No. 012 – medium flow rate Q = 8.58 l/s, ideal for regular vocal fold vibration with an impact
in each cycle. Fundamental frequency 13.2 Hz. On the acceleration waveform, the impact is clearly
visible as a peak on the positive half-wave.



Figure 5: Instantaneous velocity field downstream the glottis. The vocal folds are on the left - the
bottom one is fixed, the upper one is moving (the image is reversed vertically with respect to the real
setup). The flow direction is from the left to the right. Example taken from measurement No.012.
The velocity modulus is in color, arrows show the velocity direction and magnitude. A free jet with a
maximum flow velocity of U ≈ 17 m/s forms between the vocal folds. Two large-scale vortices develop
at the sides of the jet front.
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