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ABSTRACT 
The investigated airfoil in cross flow is excited to 

transverse oscillations of large amplitudes in a 
broad band of flow conditions. 

The study involves experiments in a water chan-
nel and numerical flow simulations both with forced 
and free oscillations. 

Experiments and simulations confirm the same 
basic excitation mechanisms, which are on the one 
hand vortex induced oscillations and on the other 
hand movement induced excitations. 

For flow conditions where the frequency of the 
natural vortex shedding is well below the natural 
frequency of the airfoil in transverse direction hard 
excitation is needed to initiate oscillations. When 
the frequency of the vortex shedding is close to or 
slightly below the natural frequency of the airfoil 
self-excited vortex induced oscillations start and 
movement induced excitation leads to very high os-
cillation amplitudes. For vortex shedding frequen-
cies higher than the natural frequency of the me-
chanical system no oscillations are excited. 

1. INTRODUCTION 
Airfoils are designed to provide good lift to drag 

ratios. However, when exposed to cross flow, flow 
separations will occur on both, the leading and the 
trailing edges. As well known from bluff body 
aerodynamics alternate vortex shedding will arise. 
If airfoils are exposed to cross flow and if they are 
free to move in transverse direction, then high am-
plitude self-excited oscillations may build up at fre-
quencies at and above the natural vortex shedding 
frequency. 

The phenomenon of such excitation is compara-
ble to the excitation of D-shaped sections as de-
scribed by Feng (1969), Novak (1974), or Bar-
dowicks (1976), however, much higher amplitudes 
are observed for airfoils due to the lower resistance 
in transverse direction compared to the D-section. 

Using the classification introduced by Nau-
dascher and Rockwell (1974) we find alternate 

vortex shedding (AVES) for the non-oscillation air-
foil. Once oscillations start, impinging leading edge 
vortices (ILEV) are observed which attach to the 
back side of the profile during almost half a cycle of 
the oscillation. During the return cycle the former 
trailing edge becomes now leading edge and a vor-
tex of opposite rotation is attaching to the profile. 

For natural frequencies of the airfoil (in trans-
verse direction) close to the natural vortex shedding 
frequency oscillation will be self-excited. This is 
typical for so-called instability induced excitation, 
IIE. 

For natural frequencies of the airfoil higher than 
the natural vortex shedding frequency this oscilla-
tion will not be self-excited, an external disturbance 
is needed to start the oscillations. Once started the 
amplitudes may become very large. This effect is 
typical for so-called hard oscillations. Since an ini-
tial transverse motion of the profile is condition for 
the excitation, the classification is movement in-
duced excitation, MIE. 

Galloping oscillations belong to this class of 
MIE. Galloping oscillations, fulfilling the Den 
Hartog criterion, e.g. Novak 1972, typically are ob-
served at low frequencies, well below the natural 
vortex shedding frequency, or speaking in terms of 
reduced velocities, at reduced velocities well above 
that where the natural vortex shedding occurs. In 
contrast, the oscillations discussed in this paper re-
fer to oscillations at or above the natural vortex 
shedding frequencies. Galloping oscillations and the 
oscillations reported here have the very high am-
plitudes in common and belong both to the class of 
MIE.  

Best known and most feared is this MIE type of 
excitation with sailing boats. If sails are exposed to 
cross flow the boats eventually start to roll fiercely. 
The so called death roll often results capsizing of 
dinghy boats or for keel boats in destruction of the 
spinnaker pole or even in demasting the boat. This 
phenomenon is best described by Marchaj (1985).  



2. DEFINITIONS 
Figure 1 explains the motion, the used co-ordi-

nate system and the absolute and relative flow di-
rection. If there is a force component, cy(t), acting in 
phase with the velocity y& (t) of the profile then an 
energy transfer from the fluid to the body will arise 
and excitation may occur if the energy dissipated in 
the mechanical system is smaller than the energy 
input. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Airfoil in cross flow. 

The product of chord c and the airfoil length l de-
fines the area A with which force coefficients are 
determined. 

Further definitions: 
U∞ =  undisturbed flow velocity 
c  =  chord length 
S  =  Strouhal number 
y*  =  y/c = nondimensional displacement 
ŷ*  =  ŷ/c = nondimensional amplitude 
fo  =  oscillation frequency 
fn  =  natural frequency of the mechanical system 

in transverse direction 
fn

* =  fn/fn = 1 = standardized natural frequency 
fno  =  natural vortex shedding frequency of the non 

oscillating profile = U∞S/c 
U* =  reduced velocity = fno/fo = 1/fo

* 
fo

* =  fo/fno = nondimensional oscillation frequency 
fv  =  vortex shedding frequency of oscillating pro-

file 
fv

* = fv/fn = nondimensional vortex shedding fre-
quency of the oscillating profile 

cp  =  power coefficient 

3. EXPERIMENTS 
Experiments were carried out with a NACA0011 

profile of chord 31.5mm in a perspex water channel 
with a flow cross section of 1m width and a water 
depth of 0.22 m. Velocities were varied between 0.2 
and 0.4 m/s. 

Flow visualization was performed using the hy-
drogen bubble technique. Displacement was meas-
ured using a Laser optical device. 

On the one hand the free oscillations were inves-
tigated. The profile was suspended from a low fric-
tion mechanical device allowing transverse oscilla-
tion. Parameters varied in the experiments were the 
spring and the damping of the mechanical oscillator 
system. Details of the experimental equipment are 
described by Widmer (2007). 

Due to the low stiffness of the airfoil in flow di-
rection a minor secondary motion at twice the os-
cillation frequency was observed in x-direction. In 
spite that these amplitudes were small they had an 
important impact on the transverse oscillation. With 
an increase of such inline oscillation also an in-
creased damping effect of the transverse oscillations 
was observed. 

On the other hand also forced oscillation experi-
ments by driving a harmonic motion in transverse 
direction of varying amplitude and frequency were 
carried out, Eichholzer (2007).  

Figure 2 displays a typical case of vortex shed-
ding observed for oscillations at 2.7 times the fre-
quency of the natural vortex shedding frequency. 

 
Figure 2: Vortex shedding in the wake of the airfoil 

at fo*=2.7 and ŷ* = 0.33. 

Figure 3 shows the influence of a varying excita-
tion frequency on the vortex formation frequency fv 
for a selected constant amplitude. The dotted line 
indicates the line with fv = fno. The shedding fre-
quency starts to synchronize with the oscillation 
frequency at about 0.8 times the natural vortex 
shedding frequency. For higher oscillation frequen-
cies the vortex shedding remains locked to the os-
cillation frequency in the entire investigated fre-
quency range. It is this range above fo

* = 1 where 
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the freely suspended profile is excited to oscillate. 
Above fo

* = 2 only hard excitation leads to oscilla-
tions. 

ŷ* = 0.33
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Figure 3: Vortex shedding frequencies for forced 

oscillations for different Reynolds numbers. 

The experiments have been performed at various 
flow velocities, but there is no indication that the 
Reynolds number has a major influence on syn-
chronization mechanisms. However, the investi-
gated Reynolds numbers are well below numbers 
typically encountered in technical problems. In or-
der to overcome this drawback additional numerical 
simulations were performed at very high Reynolds 
numbers. 

4. NUMERICAL FLOW SIMULATION 
The computations were performed with ANSYS 

CFX 11.0, a commercial finite volume CFD code. 
The turbulence model used for all the computations 
is the SST (shear stress transport) model. All the 
computations were performed in unsteady mode 
(URANS), with a second order discretization 
scheme in space and time. 

The mesh was generated with ICEM CFD ver-
sion 11.0. A structured mesh of 105 elements 
showed to be adequate. The mesh quality check 
showed that: 
- The smallest angle was larger than 34 degrees. 
- The maximum aspect ratio of the elements is 

below 18 in the boundary layer and below 44 in 
the outer flow. 

- The average y+-values were 8.3 (maximum 11) 
- The maximum volume change of the elements 

was below 1.6. 
 
All simulations were done in 2-D in spite that in 

reality there will be spanwise deformations of the 
vortices to a certain amount. Furthermore, the SST-
model uses in the outer flow the kε-model, which in 
turn is not well suited for prediction of vortical 
structures. Since in this particular case dynamic 
flow separation, reattachment and large amplitude 
oscillations are dominant, it can be assumed that the 

simulations will give at least qualitatively correct 
results. Simulations with the non-oscillating profile 
resulted in the correct prediction of the Strouhal 
number. 

For simulation of the profile oscillations the 
moving mesh method was applied. In order to avoid 
negative influence on the mesh quality a region 
around the profile was defined where no mesh de-
formation was allowed. In this region with a dia-
meter of 3 chord length mesh elements were only 
displaced, but not deformed. The mesh deformation 
was realized in the outer zone by deforming the 
elements linearly up to the boundaries of the com-
putational domain. 

Different types of simulations were performed. 
On the one hand fluid forces were determined in the 
case of forced oscillation with prescribed motion 
and on the other hand free oscillations were simu-
lated by coupling the simulated flow domain with 
the differential equations of a simple one mass 
oscillator. 
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Figure 4: Forced oscillations with varying frequen-

cies and amplitudes. 

For the case of forced oscillation with prescribed 
motion a new method was developed to get most 
information out of one single transient simulation. 
Like this the computational effort could be consid-
erably reduced. During the transient simulations the 
forcing frequency was alternatively linearly in-
creased and decreased while the displacement am-
plitude was constantly increased (Figure 4). Force 
coefficients were fitted for each oscillation cycle 
and the power was determined by multiplying force 
and displacement velocity. Positive power coef-
ficients stand for an energy transfer from the flow to 
mechanical system and thus for possible excitation. 

5. RESULTS  

5.1 Forced oscillations 

As shown in Figure 5 simulation of forced oscil-
lations revealed positive values of the power coeffi-
cient in a broad band above the frequency ratio fo

* = 



fo/fno = 1 where the oscillation frequency is identical 
with the natural vortex shedding frequency fno of the 
non-oscillating profile. 

According to the simulations a positive energy 
transfer is observed for amplitudes of up to 1.5 
chord lengths. The maximum energy transfer is ob-
served for excitation frequencies between 2 and 3 
times fno. In this range the largest power coefficients 
were calculated. This finding was confirmed by the 
experiments. The visualization of Figure 2 lies in 
this range of maximum excitation. 

 
Figure 5: Power coefficient for forced oscillations. 

In the entire range of positive power coefficients 
displayed in Figure 5 vortex shedding in the wake is 
synchronized with the oscillation frequency fo, an 
other finding confirmed by the experiment, as can 
bee seen in Figure 3. 

Also the simulations have been performed at dif-
ferent Reynolds numbers and, as in the experiment, 
no major influence on synchronization mechanisms 
was found.  

In addition to the water simulations, further 
simulations were carried out with air, a profile of 
chord length 2.3m, and a wind speed of 15m/s. 
Again very similar synchronization behavior was 
found at these by orders of magnitude higher Rey-
nolds numbers. 

5.2 Free oscillations 

Free oscillations of the airfoil in cross flow were 
simulated by coupling the fluid forces with the dif-
ferential equations of simple one mass oscillators. 

FluidySpringmech Fycydym =⋅+⋅+⋅ &&&  
For each time step the displacement is adjusted 

such that the mechanical forces and the fluid forces 
are in equilibrium. Mechanical stiffness, damping, 
and mass were adjusted to fit the experiment. 

For integration a Runge Kutta procedure of forth 
order was applied. For each new time step dis-
placement, velocity, and acceleration is taken from 
the previously simulated point. 

Figure 6 displays a simulated case were the flow 
velocity was gradually increased during a time in-
terval corresponding to about 90 periods of the me-

chanical system, T = 1/fo. The displayed reduced 
velocity U* actually can be interpreted as the fre-
quency ratio of the vortex shedding frequency of 
the non-oscillating airfoil fno and the oscillation fre-
quency fo since U* = U∞S/foc = fno/fo, with S = 0.14 
= Strouhal number of the profile.  

At a reduced velocity of U* ≈ 0.9 self excited os-
cillation started and the vortex shedding frequency 
fv synchronized with fo. It has to be noted that once 
the airfoil started to oscillate in transverse direction, 
it oscillated at the natural frequency fn of the me-
chanical system. 

In the range between 90 and 180 periods the ve-
locity was kept constant until stationary oscillations 
were observed.  

From 180 to 220 periods the velocity was re-
duced to its initial value. During the down slope 
displacement amplitudes increased further to decay 
then asymptotically to a constant value. The vortex 
shedding remains synchronized. Thus, for the same 
flow condition no oscillation occur at the beginning 
and high amplitudes at the end. This indicates a 
hysteresis effect and supports the experimental 
finding that for U* = fno/fo < 0.5 (fo

* > 2) hard exci-
tation is necessary condition for oscillations.  
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Figure 6: Simulated hysteresis of free oscillator. 

The comparable experiments are displayed in 
Figure 7. The flow velocity was increased gradually 
until self-excited oscillations did build up. The in-
crease of the velocity was stopped at U* = 0.92. In 
contrast to the simulations it took more time for the 
self-excited oscillations to build up. When the flow 
velocity was reduced the amplitudes further in-
creased, as in the comparable numerical simulation 
displayed in Figure 6. When the velocity reached 
the initial velocity again, stationary oscillations with 
amplitudes of 0.55 chord length were observed.  
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Figure 7: Measured hysteresis of free oscillator. 

In a further experiment the flow velocity was in-
creased well above synchronisation. Amplitudes 
immediately started to decay for reduced velocities 
U* > 1. Figure 8 shows the entire range of self-ex-
cited oscillations for the given mechanical system. 
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Figure 8: Range of self-excited oscillations 

6. CONCLUSION 
Airfoils in cross flow can be excited to very high 

amplitudes of oscillations in transverse direction 
due to MIE. Self-excited oscillations arise only 
when the flow velocity is such that the natural vor-
tex shedding frequency is below and close to the 
natural frequency of the mechanical system in 
transverse direction (2 > fo

* = fo/fno > 1 or 0.5 < U* 
< 1). For lower velocities hard excitation is possi-
ble. In this range movement induced oscillations 
may built up from an initial disturbance, e.g. a gust 
or a mechanical impact.  

The power transferred to the airfoil increases 
with the 3rd power of the flow velocity. For this rea-
son the highest risk for destructive oscillation is 
when the mechanical system has a natural frequency 
in transverse direction which is excited at high flow 
velocities. 

To avoid such cases the natural frequency for 
systems with low damping should either be excited 
only at low flow velocities or the possible excitation 

range should be well above the highest flow 
velocity (U* < 1/8).  

Figure 9 gives an overview on the risk potential 
and the possible types of excitation of an airfoil in 
crossflow in the range of reduced velocities 1/8 < 
U* < 1. 
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Figure 9: Range of possible self-excited oscillations 

and hard excitation. 

 
General conclusion is that both, numerical simu-

lations and experiments, led qualitatively to the 
same findings and allowed better understanding of 
the phenomena involved. 
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