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ABSTRACT 
Copeland and Moon’s experimental results for a 

long pipe conveying fluid in the presence of a 
relatively large end-mass have displayed some truly 
fascinating dynamical behaviour. Theoretical 
studies, on the other hand, have all dealt with 
shorter pipes and smaller end-masses, mainly 
because the convergence of the theoretical results 
for long pipes with large end-masses is problematic. 
In this paper, we have been successful to some 
extent in this regard, and some theoretical results 
for Copeland and Moon’s parameters are 
presented. 

1. INTRODUCTION 
The first studies on cantilevered pipes conveying 

fluid with attached masses were undertaken, using 
linear models, by Hill and Swanson (1970). This 
linear work was later continued by Jendrzejczyk 
and Chen (1985) for a pipe with a mass attached at 
the free end (here referred to as an “end-mass”) and 
by Sugiyama et al. (1988). These studies showed 
that the additional mass(es) could either stabilize or 
destabilize the system vis-à-vis the plain pipe, 
depending on the system parameters and location of 
the additional mass(es) [see Païdoussis (1998, 
Section 3.6.3)].  

Nonlinear studies of a pipe with an end-mass 
started mainly after some nonlinear equations for a 
plain pipe (i.e., without additional masses or springs 
attached to the pipe) were derived by many 
researchers (e.g., by Ch'ng and Dowell (1979), 
Semler et al. (1994) for planar (2-D) motion and by 
Lundgren et al. (1979), Bajaj et al. (1980), and 
Rousselet and Herrmann (1981), for three-
dimensional (3-D) motion. 

The first very interesting nonlinear study on 
pipes with an end-mass was the experimental work 
by Copeland and Moon (1992). The experiments 
were conducted with particularly long, vertically 
hanging, cantilevered elastomer pipes, fitted at the 
free end with end-masses of different sizes and 

showed extremely rich dynamical behaviour, as 
summarized in Figure 1, where Γ=me/[(M+m)L], 
with me being the end-mass, M the mass of the fluid 
per unit length, and m that of the pipe per unit 
length;  is the dimensionless flow 
velocity used by Copeland and Moon. In addition to 
planar and orbital (rotary) motions, an extraordinary 
array of geometrically more complex motions was 
discovered. In all cases with an end-mass, for 
sufficiently high flow velocity the motions became 
chaotic, often with several intervening periodic 
oscillatory states.  In at least some cases, the 
quasiperiodic route to chaos was found to be 
followed. In the analytical part of the study, which 
was not wholly successful (Copeland, 1992), the 
long vertical pipes were modelled as hanging 
strings. 
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Païdoussis and Semler (1998) studied both 
theoretically and experimentally the dynamics of 
more modestly long hanging elastomer cantilevers. 
In these experiments, the end-mass parameters were 
considerably smaller than in Copeland and Moon's 
experiments. Interesting observations were made in 
this case also. Planar flutter was followed by a 
secondary bifurcation as the flow velocity was 
increased, which could be identified with a sudden 
and substantial increase in the frequency, 
accompanied by a peculiar mode of oscillation with 
a seemingly stationary node around the mid-length. 
For higher flow velocities, the motion eventually 
became chaotic and three-dimensional. 

Païdoussis and Semler's (1998) experimental 
results were compared to the theoretical ones, 
obtained with their 2-D model. The Hopf and 
secondary bifurcations were reasonably well 
predicted, as was the transition to chaos. See 
Païdoussis (1998, Section 5.8.3) for an extensive 
review on nonlinear work on pipes with an end-
mass. 

 
 



 
 
 

 
 

 

Figure 1. Transition from equilibrium to chaos for 
3-D motions of the system for various end-masses.  

Top: the ranges of various oscillatory states in 
terms of increasing ug for different end-masses, Γ.  

S: stationary tube; PL: planar oscillation; CW: 
clockwise rotating motion; CCW: counter-clockwise 
rotating motion; PL, CW: clockwise rotating planar 
oscillation; PL, CCW: counter-clockwise rotating 

planar oscillation; PL(R): planar oscillation 
rotating through a finite angle; PL, P: coupled 

planar and pendular oscillation; PL, P(R): coupled 
oscillation and pendular oscillation rotating 

through a finite angle; N: nutation; CH: chaos.  
Bottom: sketches of various periodic motions. (a) 

PL; (b) CCW; (c) PL(R); (d) PL, P; (e) N 
[Copeland and Moon (1992)]. 

 
 
A 3-D version of the nonlinear equations of 

motion of Semler et al. (1994) is derived by 
Wadham-Gagnon et al. (2007). These equations 
have been used successfully (Modarres-Sadeghi et 
al., 2007) to study the three-dimensional behaviour 
of a pipe with an end-mass and with physical 
properties of the pipe as in Païdoussis and Semler's 
(1998) experiments. In the same paper, it was 
shown that the convergence of the 3-D theoretical 
results for cases with large gravitational parameter 
(γ; proportional to the length cubed) and end-mass 
parameter (Γ) is not easily obtainable. In the present 
paper, the 3-D study of pipes with end-masses is 

extended to the range of the pipes used in Copeland 
and Moon’s experiments (1992). 

Γ Increasing ug

2. THEORETICAL MODEL 
The equations of motion have been derived by 

Wadham-Gagnon et al. (2007) for a general case 
where there are some intermediate springs as well 
as an end-mass attached to the pipe. For the present 
study, all terms related to the intermediate springs 
have been deleted. The resulting dimensionless 
form of these equations is 
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where the dimensionless parameters are 
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in which η and ζ are mutually orthogonal 
dimensionless transverse displacements, u is the 
dimensionless flow velocity, γ the dimensionless 
gravity parameter, β a mass parameter, Γ the 
dimensionless end-mass parameter, and τ the 
dimensionless time. In Eqs. (3), s is the distance 
along the pipe, measured from the clamped end, L is 
the length of the pipe, D its diameter and EI its 
flexural rigidity; ρ is the density of the fluid, m the 
mass per unit length of the pipe, M the mass per unit 
length of the fluid, U the dimensional flow velocity, 
and me the end-mass. The transverse displacements 
are of order ε. 

This dimensionless set of nonlinear partial 
differential equations is discretized to a series of 
ODEs via Galerkin’s technique with the 
eigenfunctions of a plain cantilevered beam as the 
basis functions. The resulting set of ordinary 
differential equations is then solved by Houbolt’s 
finite difference method (Semler et al., 1996) and 
AUTO (Doedel and Kernéves, 1986), utilizing 
appropriate initial conditions and fine enough time 
steps.  For a detailed discussion on the methods of 
solution see Modarres-Sadeghi (2006). The results 
shown in this paper are obtained by using 8 modes 
each in η and ζ directions (16 modes in total). 

3. RESULTS 
Physical properties of the pipe used in Copeland 

and Moon’s experiments are given in Tables 1 and 
2. They conducted the experiments for the pipe with 
no end-mass (plain pipe) as well as the pipe with 
eight different end-masses. For every case, the pipe 
lost its initial static stability by a Hopf bifurcation 
leading to flutter at some critical flow velocity, uHB. 
The ensuing dynamics depends on the value of the 
end-mass as can be observed in Figure 1. We have 
conducted the theoretical analysis for all these 9 
cases and we discuss the results in what follows. 

For the case with no end-mass, our theoretical 
results, in agreement with Copeland and Moon’s 
observations, show planar oscillation after the loss 
of stability. This has been studied in detail in 
Modarres-Sadeghi et al. (2008), where it is shown 
that, if one does not take into account the influence 
of gravity, a three-dimensional oscillation is 
predicted, which is not what occurs physically. 

With a non-zero gravity parameter, however, we 
have observed a planar periodic motion, which 
remains periodic with no secondary bifurcation 
point, the same as in Copeland and Moon’s 
observations. 

 
Length, L 0.989 m 

Inner/outer diameter, Di /Do 7.94 / 15.85 mm 

Flexural rigidity, EI 7.28 × 10-3 N⋅m2 

Density of the pipe, ρp 1167 kg/m3 

Density of the fluid, ρf  999 kg/m3 

Mass per unit length of pipe, m 0.177 kg/m 

Mass per unit length of fluid, M 0.04951 kg/m 

Table 1. Pipe parameters used in the calculation 
 

Dimensionless mass parameter, β 0.2186 

Dimensionless gravity parameter, γ 295.27 

Dimensionless end-mass parameter, Γ 0.367 … 3.81 

 

Table 2. Dimensionless parameters used in the 
calculation 

 
The interesting dynamics is observed in the 

presence of an end-mass. Overall, similarly to what 
Copeland and Moon observed in their experiments, 
the pipe loses stability by a Hopf bifurcation at 
some critical flow velocity. This critical flow 
velocity increases as larger end-masses are used. In 
all cases, the Hopf bifurcation is found to be 
subcritical, in agreement with Copeland and Moon 
experimental observations. Depending on the initial 
conditions used in FDM, one can find zero or 
nonzero solutions for flows lower than the critical. 
The periodic oscillations are then followed by 
period-2, -4, -n oscillations in some cases and 
quasiperiodic oscillations in some other cases; both 
are routes leading to chaos at higher flow velocities. 
Figure 2 shows the critical flow velocities for the 
Hopf bifurcation (onset of periodic oscillations 
according to a linear prediction), limit point 
(threshold of periodic motions according to 
nonlinear theory) and the onset of chaotic 
oscillations. It is observed that for large end-mass 
parameters, chaotic oscillations start even before the 
Hopf bifurcation point. The Hopf bifurcation is 
subcritical and therefore periodic motions start at 
flow velocities lower than the critical flow for the 
Hopf bifurcation. Then, the transition from periodic 



to chaotic oscillations occurs so quickly that it is 
possible to observe chaotic oscillations even before 
the critical flow velocity for the Hopf bifurcation. 
This means that for a range of flow velocities, 
depending on the initial conditions, the pipe will 
either go to its static equilibrium position or display 
chaotic oscillations. It should be mentioned here 
that the first point of instability, a double Hopf 
bifurcation point, is found by AUTO very 
accurately. However, AUTO cannot follow the 
stable solutions following a double Hopf 
bifurcation; therefore all the nonzero stable results 
are obtained by FDM. 
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Figure 2. Critical flow velocities of Hopf 
bifurcation, limit point and the onset of chaos for 

various end-mass parameters. 

 
For the two smallest end-mass parameters in 

Copeland and Moon’s experiments, Γ = 0.37 and   Γ 
= 0.746, we find a quasiperiodic route to chaos. The 
succession from periodic to chaotic motion is so 
quick (see Figure 2) that Copeland and Moon 
reported the onset of chaos immediately following 
the static equilibrium solution. Figure 3 shows a 
periodic solution for Γ =0.367 and u=11.6, where 
the pipe oscillates on a curved path. The first two 
rows of this figure show time histories and phase-
plane plot of the pipe oscillations in two 
perpendicular directions. The solo plot in the last 
row shows the top view of the tip motion. At higher 
flow velocities, quasiperiodic oscillations are 
obtained which are followed by chaotic oscillations 
at even higher flows. 

The difference between the critical points for the 
limit point and the onset of chaos in Figure 2 gives 
the range for which the periodic or quasiperiodic 
oscillations could have been observed in the 
experimental case. This range widens as the end-
mass increases and this can be thought of as the 
reason that Copeland and Moon were able to 
observe some periodic or quasiperiodic oscillations 
in the cases with larger end-mass parameter. 

 
 

Figure 3. Periodic solution for Γ = 0.367 and 
u=11.6. Fist row from left: η  versus τ ;η  versus 
η . Second row same as first, but for ζ . Third row: 

ζ  versus η . 

 
For large end-mass parameters, where Copeland 

and Moon have reported various kinds of planar and 
three-dimensional oscillations (some quite 
intricate), our theoretical results have shown similar 
behaviour. As an example, for Γ = 1.24, oscillations 
are initially planar in both experiment and in theory. 
The planar oscillation is then followed by what 
Copeland and Moon call “coupled planar and 
pendular oscillations” and this is what we have 
obtained theoretically, as shown in  

Figure 4 for u = 16.2, where a period-4 
oscillation is observed. This case shows a period-
doubling route to chaos. 

In some cases and for some flow velocities, the 
pipe undergoes a planar motion which rotates 
within a limited angle. Figure 5 shows this motion 
for Γ=2.3 and u=18.8. Copeland and Moon 
observed this kind of motion for their experimental 
run with Γ =2.3. We have also been able to observe 
planar motions, which rotate in clockwise or 
counter-clockwise directions in cases with larger 
end-masses. Figure 6 shows an example of counter-
clockwise planar oscillations for the case with Γ = 
3.55 at u = 24.6.  



 

Figure 4. Period-4 solution for Γ =1.24 and 
u=16.2. 

 

 
Figure 5. Planar motion within a limited angle for  

Γ =2.3 and u=18.8. 

 
Chaotic oscillations are obtained at high flows for 

all mass parameters, as Copeland and Moon have 
observed. Again, similarly to their experimental 
observations, the critical point for the onset of chaos 
increases with the end-mass parameter. 

Table 3 gives a summary of types of oscillations 
observed theoretically for various end-mass 
parameters at various flow velocities. Numerical 
values for the theoretical critical points are smaller 
than those observed experimentally. This may be 
attributed to the existence of imperfections in the 
pipe used in the experiments, as well as to the fact 
that the end-mass is considered as a point-mass and 
also to the assumptions made in the theoretical 
model (for example, that the equations are correct to 
O(ε3), while with large amplitude motions, we 
might need higher-order models). 

 

Figure 6. Oscillations for Γ =3.55 and u=24.6. 

 

Γ

Γ

 Planar 
 Planar Clockwise 
 Planar Counterclockwise 
 Planar Pendular 
 Planar Rotating through a Finite Angle 
 Chaotic 

Table 3. Types of oscillations observed at various 
flow velocities and with various end-mass 

parameters, found theoretically. 

4. CONCLUSION 
Some theoretical results are presented for a long 

pipe with an end-mass used by Copeland and Moon 
in their experimental study. It was shown 
previously that achieving convergence of theoretical 
results for the dimensionless parameters 
corresponding to Copeland and Moon’s experiment 
is not a trivial task. A newly developed three-
dimensional model is used, a relatively large 
number of modes has been used in Galerkin 
discretization of the partial difference equation, and 
extra care has been taken in choosing the initial 
conditions and time steps in the finite difference 
method used in the numerical calculations.  



It is shown that the pipe loses initial stability by a 
double Hopf bifurcation, similarly to Copeland and 
Moon’s observation. The resulting periodic motions 
are followed by period-doubling or quasiperiodic 
routes to chaos depending on the end-mass 
parameter. The critical values for the Hopf 
bifurcation and that for the onset of chaos increase 
with the end-mass parameter. The theoretical results 
reproduce some of the rich dynamics observed by 
Copeland and Moon in their experiments, including 
coupled planar and pendular oscillations, planar 
oscillations rotating through a finite angle, and 
planar motions rotating clockwise or counter-
clockwise. 
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