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Czech Technical University Prague, Faculty of Mechanical Engineering, Karlovo n. 13, 121 35 Praha

2, Czech RepublicKarlovo n. 13, 121 35 Praha 2, Czech Republic

ABSTRACT

The subject of this article is the numerical sim-
ulation of the interaction of two-dimensional in-
compressible viscous fluid and a vibrating airfoil
with large amplitudes. A solid airfoil with three
degrees of freedom can rotate around the elastic
axis, oscillate in the vertical direction and its flap
can rotate. The numerical simulation consists of
the finite element solution of the Navier-Stokes
equations coupled with a system of nonlinear or-
dinary differential equations describing the airfoil
motion. The time-dependent computational do-
main and a moving grid are taken into account
with the aid of the Arbitrary Lagrangian-Eulerian
(ALE) formulation. High Reynolds numbers up
to 106 require the application of a suitable stabi-
lization of the finite element discretization. Nu-
merical tests and comparison with NASTRAN
solver prove that the developed method is suffi-
ciently accurate and robust.

1. INTRODUCTION

The interaction of fluids and structures plays an
important role in many fields of science and tech-
nology. The aeroelastic stability of aerospace ve-
hicles and the aeroelastic responses represented
by dynamic load prediction and vibration levels
in wings, tails and other aerodynamic surfaces
have a great impact on the design as well as in
the cost and operational safety. We paid atten-
tion to several aspects of the numerical simula-
tion of flow induced vibrations. In Sváček at al
(2007) we analyzed numerically the interaction of
a moving fluid with an isolated airfoil. In many
cases it is necessary to compare computational
results with wind tunnel experiments. This is

Figure 1: Schema of an airfoil with 3 degrees of
freedom.

the subject of the paper Feistauer at al (2007),
where the flow induced vibrations were analyzed
numerically for an airfoil with two degrees of free-
dom, inserted in a channel (wind tunnel). In this
case the airfoil can ocsillate in the vertical direc-
tion and rotate around an elastic axis. In the
present paper we are concerned with interaction
of a moving fluid and an airfoil with three degrees
of freedom, see Fig.1. This means that the air-
foil is formed by two parts - the main part and
a flap. The degrees of freedom are the vertical
displacement, the rotation of the complete con-
figuration around the main elastic axis and the
rotation of the flap around the flap elastic axis.
Computational results were obtained for the air-
foil NACA0012 inserted in a channel.



2. MATHEMATICAL MODEL

2.1. ALE formulation of the Navier-Stokes
equations

The ALE description is given by a smooth, one
to one mapping

At : Ω0 7→ Ωt, X 7→ x(X, t) = At(X), (1)

(defined for each t ∈ I = [0, T ]) of the reference
domain Ω0 onto the domain Ωt. The mapping
At is identical in the vicinity of the part of the
boundary, which is not deformed. The coordi-
nates of a point x are spatial coordinates, coor-
dinates of a point X are ALE or reference coor-
dinates.

First, we define the domain velocity

w̃(X, t) =
∂

∂t
x(X, t). (2)

This velocity can be expressed in spatial coordi-
nates as

w(x, t) = w̃(A−1
t (x), t). (3)

Let us consider a function f : M 7→ R, where R

is the set of all real numbers and M = {(t,x); t ∈

I,x ∈ Ωt}, and denote f̃(X, t) = f(At(X), t).
Then we define the ALE derivative of f by

DA

Dt
f : M 7→ R,

DA

Dt
f(x, t) =

∂f̃

∂t
(X, t)

X = A−1
t (x). (4)

The application of the chain rule gives

DA

Dt
f =

∂f

∂t
+ (w · ∇)f. (5)

Using this relation, we can obtain the Navier-
Stokes equations in the ALE form

DA

Dt
u + [(u −w) · ∇]u + ∇p − ν4u = 0 in Ωt

divu = 0 in Ωt. (6)

The solution of these equations characterizes the
flow by the velocity field u = u(x, t) and the
kinematic pressure p = p(x, t), x ∈ Ωt and t ∈
[0, T ].

2.1.1. Equations of motion of the airfoil

The equations for moving profile with 3 degrees
of freedom are derived from the Euler-Lagrange
equations for generalized coordinates h-vertical
displacement, α-torsion around the main elastic
axis EO and β-the torsion of the flap around the
flap elastic axis EF. The equations have the form

mḧ + [(Sα − Sβ) cos α + Sβ cos(α + β)]α̈

+Sβ cos(α + β)β̈ − (Sα − Sβ) sin αα̇2

−Sβ sin(α + β)(α̇ + β̇)2 + Dhhḣ + khhh = L2

[(Sα − Sβ) cos α + Sβ cos(α + β)]ḧ

+[(Iα − 2x1T Sβ) + 2x1T Sβ cos β]α̈ (7)

+[Iβ + x1T Sβ cos β]β̈ − x1T Sβ sin ββ̇2

−2x1T Sβ sin βα̇β̇ + Dααα̇ + kααα = Mα

Sβ cos(α + β)ḧ + [Iβ + x1T Sβ cos β]α̈ + Iββ̈

+x1T Sβ sin βα̇2 + Dββ β̇ + kβββ = Mβ.

Here m is the mass of the entire airfoil, Sα is the
static moment with respect to the axis EO, Sβ

is the static moment of the flap section with re-
spect to the axis EF, Iα is the inertia moment
with respect to the axis EO, Iβ is the inertia mo-
ment of the flap section with respect to the axis
EF. The constants Dhh, Dαα, Dββ are aerody-
namical damping coefficients and khh, kαα, kββ

are stiffness coefficients. The constant x1T is dis-
tance between EO and EF. The forces are repre-
sented by L2, Mα, Mβ, which mean vertical force,
the momentum of the force on the entire airfoil
with respect to the main elastic axis EO and the
momentum of the force on the flap section with
respect to the flap elastic axis EF.

The linearized equations in the matrix form
read

K̂d(t) + B̂ḋ(t) + M̂d̈(t) = f̂(t), (8)

where the stiffness matrix K̂, the viscous damp-

ing B̂ and the mass matrix M̂ have the form

K̂ =




khh 0 0
0 kαα 0
0 0 kββ



 ,

B̂ =




Dhh 0 0
0 Dαα 0
0 0 Dββ


 ,

M̂ =




m Sα Sβ

Sα Iα Iβ + x1T Sβ

Sβ Iβ + x1T Sβ Iβ



 .



The vector of the force f̂ and the vector of the
generalized coordinates d are given by

f̂(t) =




L2(t)
Mα(t)
Mβ(t)


 , d =




h(t)
α(t)
β(t)


 .

2.2. Initial and boundary conditions

The Navier-Stokes equations are completed by
the initial condition

u(x, 0) = u0, x ∈ Ω0, (9)

and boundary conditions. The part of the bound-
ary ΓD represents the inlet and impermeable
fixed walls. On ΓD we specify the Dirichlet
boundary condition

u|ΓD
= uD. (10)

The part of the boundary ΓO is the outlet, where
we use the so-called do-nothing boundary condi-
tion

−(p − pref )n + ν
∂u

∂n
= 0 on ΓO, (11)

where pref is a given reference pressure. On ΓWt
,

representing the surface of the airfoil, we consider
the condition

u|ΓWt
= ũ|Wt

= w|ΓWt
. (12)

Moreover, we use the initial conditions for system
(7) or (8)

α(0) = α0, α̇(0) = α1,

β(0) = β0, β̇(0) = β1, (13)

h(0) = h0, ḣ(0) = h1,

where α0, α1, β0, β1, h0, h1 are given constants.

3. DISCRETIZATION OF THE
PROBLEM

3.1. Time discretization

We use an equidistant partition of the time in-
terval [0, T ], formed by 0 = t0 < t1 < · · · < T ,
tk = kτ , where τ > 0 is a time step, and ap-
ply a three point backward difference scheme.
On each time level tn+1 we obtain the prob-
lem to find functions un+1 : Ωtn+1

7→ IR2 and

pn+1 : Ωtn+1
7→ IR such that

3un+1 − 4ûn + ûn−1

2τ
(14)

+
(
(un+1 − wn+1) · ∇

)
un+1

−ν∆un+1 + ∇pn+1 = 0 in Ωtn+1
,

divun+1 = 0 in Ωtn+1
.

Here uk, pk and wk denote the approximations of
the functions u(tk), p(tk) and w(tk), respectively.

This system is considered with the boundary
conditions (10), (11), (12). The symbols ûn and
ûn−1 mean the functions un and un−1 trans-
formed from the domain Ωtn and Ωtn−1

to the
domain Ωtn+1

using the ALE mapping.

3.2. Discretization in space

The starting point for the space discretization
is the weak formulation of problem (14). For
this purpose we introduce a simplified notation
Ω = Ωtn+1

,u = un+1, p = pn+1 and use the ap-

propriate function spaces W = (H1(Ω))2 (the
Sobolev space), X = {v ∈ W ; v|ΓD∪ΓWt

= 0}

and M = L2(Ω). We introduce the notation

a(U∗, U, V ) =
3

2τ
(u,v)+

ν((u,v)) + (((u∗ − wn+1) · ∇)u,v)

−(p, ∇ · v) + (∇ · u, q), (15)

f(V ) =
1

2τ

(
4ûn − ûn−1, v

)
−

∫

ΓO

v · n ds,

where

(a, b) =

∫

Ω
abdx

and
U = (u, p) ∈ W × M

U∗ = (u∗, p) ∈ W × M

V = (v, q) ∈ X × M.

The solution of the weak formulation is U =
(u, p) such that it satisfies the conditions

U ∈ W × M, a(U,U, V ) = f(V )

∀V = (v, q) ∈ X × M, (16)

and u satisfies the boundary conditions (10) and
(12).



In the finite element approximation we ap-
proximate the spaces W,X,M by their finite-
dimensional subspaces W∆,X∆,M∆, ∆∈(0,∆0),
∆0 >0, where

X∆ =
{
v ∈ W∆; v|ΓD∪ΓWt

= 0
}

.

This means that for each ∆ ∈ (0,∆0) we as-
sign finite dimensional subspaces W∆, X∆, M∆,
with dimensions dim W∆ = nW (∆), dim X∆ =
nX(∆), dim M∆ = nM (∆). The approximate so-
lution is defined as a couple U∆ = (u∆, p∆) ∈
W∆ × M∆ such that

a(U∆, U∆, V∆) = f(V∆),

∀V∆ = (v∆, q∆) ∈ X∆ × M∆ (17)

and u∆ satisfies an approximation of the bound-
ary conditions (10) and (12). The finite element
spaces X∆ and M∆ must satisfy the Babuška-
Brezzi (BB) condition, which guarantees the sta-
bility of the used scheme. In our computations
we use the well-known Taylor-Hood P 2/P 1 ele-
ments satisfying the (BB) condition (Brezzi and
Falk (1991)).

4. CONSTRUCTION OF THE ALE
MAPPING

To perform the deformation of the computational
domain in the ALE formulation, we must con-
struct the ALE mapping numerically. We define
it via the solution of the linear elasticity equa-
tions

(λ + µ)∇ div g + µ∆g = 0 ∈ Ω0, (18)

where λ and µ are Lamé coefficients and g is
defined in the domain Ω0. Boundary condi-
tions for g are prescribed by g|ΓD∪ΓO

= 0 and
g|ΓW0

is computed from the motion of the air-

foil, which is given for each time t by α(t), β(t),
h(t). Solving equation (18) gives the ALE map-
ping of the domain Ω0 onto Ωt by the relations
At : X 7→ x(X , t) = At(X) = X + g for each
time instant t. Then, from this field we construct
the domain velocity w used in (6).

5. STABILIZATION OF THE FINITE
ELEMENT METHOD

In order to get correct and accurate results, it is
necessary to apply the stabilization of the finite
element method. The reason is that the standard
application of the finite element method leads to

Figure 2: ALE linear elastic deformation of the
anisotropically adapted mesh for NACA0012 with
h = 0mm, α = 40, β = −40 and EO in 33.33%
and EF in 80% of the profile chord.

numerical schemes that give non-physical results
represented by spurious oscillations, which ap-
pear in the computed solution in the case of high
Reynolds numbers.

In our case we apply the streamline diffusion
method analyzed in Gelhard at al (2005). We
have the triangulation T∆ of the domain Ω =
Ωtn+1

with triangles K. We define the stabiliza-
tion forms

L∆(U∗, U, V )

=
∑

K∈T∆

δK

(
3

2τ
u − ν∆u

+(w · ∇)u + ∇p, (w · ∇)v)K , (19)

F∆(V )

=
∑

K∈T∆

δK

(
1

2τ
(4ûn − ûn−1), (w · ∇)v

)

K

,

where

U = (u, p) U∗ = (u∗, p) V = (v, q),

δK ≥ 0 are suitable parameters, w = u∗ − wn+1

is the transport velocity and (·, ·)K is the scalar
product in the space L2(K).

Moreover, we define the stabilization pressure
form

P∆(U, V ) =
∑

K∈T∆

τK(∇ · u, ∇ · v)K ,

U = (u, p) V = (v, q), (20)

with suitable parameters τK ≥ 0.
The solution of the stabilized discrete problem

is U∆ = (u∆, p∆) ∈ W∆ × M∆ such that the
component u∆ satisfies the boundary conditions
(10) on ΓD and (12) on ΓWt

and

a∆(U∆, U∆, V∆) + L∆(U∆, U∆, V∆)

+P∆(U∆, V∆) = f∆(V∆) + F∆(V∆), (21)

∀V∆ = (v∆, q∆) ∈ X∆ × M∆.



Now, we describe the choice of the δK and τK .
We split the computational domain into two sub-
domains. The diffusion component dominates in
the first subdomain and the convective compo-
nent dominates in the second one. In both sub-
domains we choose these parameters in a different
way. The definition of the parameters δK is based
on the transport velocity w and the viscosity ν.
We put

δK = δ∗
∆K

2‖w‖L∞(K)
ξ(<w), (22)

where

<w =
δK‖w‖L∞(K)

2ν
(23)

is the so-called local Reynolds number and ∆K is
the size of the element K measured in the direc-
tion of w. The function ξ(·) is non-decreasing in

dependence on <w in such a way, that for local

convective dominance (<w > 1) ξ → 1 and for

local diffusion dominance (<w < 1) ξ → 0. The
parameter δ is chosen as an element of the inter-
val (0, 1]. The function ξ(·) can be defined in the
form

ξ(<w) = min

(
<w

6
, 1

)
. (24)

The parameters τK are defined by

τK = τ∗∆K‖w‖L∞(K) and τK = 0 (25)

for local convective dominance and local diffusion
dominance, respectively, and τ∗ ∈ (0, 1].

6. RESULTS

Here we present the results comparable with
a linear frequency-model and stability anal-
ysis performed by Lośık and Čečrdle (2007)
using the NASTRAN code for the 0% bal-
anced flap. We considered NACA0012 airfoil
with chord lenght c=0.3 m, axis EO at c/3
and axis EF at 0,8 c. The numerical simu-
lation was carried out for the following data:
m = 0.086622 kg, khh = 105.109N/m,
kαα = 3.69558N rad/m, kββ = 0.2N rad/m,
Sα = 0.000779598 kg m, Sβ = 0kg m,
Iα = 0.000487291 kg m2, x1T = 0.14m,
Iβ = 0.0000341104 kg m2, Dhh = 0Ns/m,
Dαα = 0Ns rad/m, Dββ = 0Ns rad/m.
Examples of computed free airfoil vibrations are
presented in Figs. 3 and 4 for two inlet airflow
velocities. The translational and rotational
vibration amplitudes for the flow velocity 5 m/s
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Figure 3: Functions h, α, β and their spectral
analysis for inlet flow velocity 5 m/s.
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Figure 4: Functions h, α, β and their spectral
analysis for inlet flow velocity 10 m/s.

are decreasing, the system is stable and a low
level sustained vibrations are caused by vortex
separation. For the higher flow velocity 10 m/s,
the system is becoming unstable and rotational
amplitudes of vibration are increasing in time.

7. DISCUSSION AND CONSLUSIONS

Good agreement with the NASTRAN results in
the frequency analysis of the vibrations of the air-
foil in dependence on increasing inlet flow veloc-
ity was obtained. Both the numerical simulations
in the time domain and the NASTRAN compu-
tations show that the system becomes unstable
by flutter at the inlet velocity slightly above 10
m/s. A further improvement of the computa-
tional model is possible by including the turbu-
lence.
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