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ABSTRACT

The work deals with the numerical solution of 2D
unsteady compressible viscous flows in a symmet-
ric channel for a low inlet airflow velocity. The
unsteadiness of the flow is caused by a prescribed
periodic motion of a part of the channel wall with
large amplitudes, nearly closing the channel dur-
ing the oscillations. The flow in the channel can
represent a simplified model of airflow coming
from the trachea, through the glottal region with
periodically vibrating vocal folds to the human vo-
cal tract.

The numerical solution is realized by finite vol-
ume method and the explicit predictor-corrector
MacCormack scheme with Jameson artificial vis-
cosity using a grid of quadrilateral cells. The
moved grid of quadrilateral cells is considered in
the form of conservation laws using Arbitrary
Lagrangian-Eulerian method.

1. INTRODUCTION

The fluid-structure interaction problems can be
met in many technical and others applications.
This study presents the numerical solution of the
compressible viscous flows in a symmetric chan-
nel, which is a model of the glottal spaces in the
human vocal tract. In reality, the airflow com-
ing from the lungs causes the vocal folds self-
oscillations, and the glottis is completely closing
in normal phonation regimes generating acoustic
pressure fluctuations. In this study, the changes
of the channel cross-section are prescribed; the
channel is harmonically opening and nearly clos-
ing as a first approximation of reality enabling
the investigation of the airflow field in the glottal
region.

Numerical results of the unsteady flows in the
channel are presented for inlet Mach number
M∞ ≈ 10−2, Reynolds number Re = 5× 103 and
for frequency of the wall motion 20 Hz and 100

Hz. When the glottis is closing the airflow veloc-
ity is becoming much higher in the narrowest part
of the airways, where also the viscous forces are
important. Therefore for a correct modelling of a
real flow in the glottis, the compressible, viscous
and unsteady fluid-flow model should be consid-
ered.

The authors present the numerical solution
and the simulations of the flow field in the chan-
nel performed by the especially developed pro-
gram.

2. MATHEMATICAL MODEL

The 2D system of Navier-Stokes equations in con-
servative non-dimensional form has been used
as mathematical model to describe the unsteady
laminar flow of the compressible viscous fluid in
a domain (Fürst et al, 2001):
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where W = [ρ, ρu, ρv, e]T is vector of conserva-
tive variables, F and G are the vectors of inviscid
fluxes, R and S are the vectors of viscous fluxes,
Re = (2h′ρ′∞u′∞)/η′∞ is Reynolds number given
by inflow variables marked by infinity subscript
(dimensional variables are marked by the prime),
ρ denotes the density, u and v are the components
of velocity vector and e is total energy per unit
volume. The static pressure is expressed by the
equation of state:
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3. MATHEMATICAL FORMULATION

The bounded computational domain D for nu-
merical solution of the system (1) is shown in
Fig. 1. It is a scale model of the symmetric



Figure 1: Domain D, the symmetric channel.

channel which shape is inspired by a shape of the
vocal folds and supraglottal spaces. The compu-
tational domain is only the lower half of the sym-
metric channel. The upper boundary is the axis
of symmetry, the lower boundary is the channel
wall a part of which, between points A and B, is
changing the shape according to a given function
of time and axial coordinate:
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where f = 5.83 × 10−3 is dimensionless fre-
quency, a1 = 0.18, a2 = 0.015. The gap g =
(d + h) − w(xC, t) between the point C and the
channel axis is the narrowest part of the channel.
The considered dimensions of the domain D are
summarized in Table 1.

x [-] y [-] x [mm] y [mm]
A 1.75 0.4 35 8
B 2.4 0.4 48 8
C 2.3 w(xC, t) 46 w(xC, t) · 20

gmin - 0.01 - 0.2
gmax - 0.07 - 1.4

L 8 - 160 -
h - 0.4 - 8
d - 0.4 - 8

Table 1: Dimensions of the computational do-
main D.

The boundary conditions are considered in the
following formulation:

1. Upstream conditions: u∞ = M∞cos(α),
v∞ = M∞sin(α), ρ∞ = const., p∞ is ex-
trapolated from domain D and α is angle of
incoming flow.

2. Downstream conditions: p2 = const.,
(ρ, ρu, ρv) are extrapolated from D.

3. Flow on the wall: (u, v) = (0, vwall) and
∂T
∂~n = 0. (T = p/ρ is temperature).

4. Flow on the axis of symmetry: (u, v) ·~n = 0.

4. NUMERICAL SOLUTION

The numerical solution uses finite volume
method (FVM) in cell centred form on the grid
of quadrilateral cells.

The bounded domain D is divided into mutu-
ally disjoint sub-domains Di,j (e.g. the quadrilat-
eral cells). The system (1) is integrated over the
sub-domains Di,j using Green formula and Mean
value theorem. Due to the unsteady domain the
integral form of FVM is derived using the Ar-
bitrary Lagrangian-Eulerian (ALE) formulation.
ALE method defines homeomorphic mapping of
reference domain Dt=0 at initial time to a domain
Dt at t > 0 (Honzátko et al, 2006).

The explicit predictor-corrector MacCormack
(MC) scheme in the domain with moving grid
of quadrilateral cells is used for the numerical
solution of the system (1). The scheme is the 2nd
order of the accuracy in time and space (Fürst et
al, 2001):
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where ∆t = tn+1 − tn is time step, µi,j =∫ ∫
Di,j

dxdy is volume of cell Di,j , ∆x and ∆y

are steps of the grid in x, y directions, vector
sk = (s1, s2)k represents the speed of the edge
k (see Fig. 2). The physical fluxes F, G, R, S
on the edge k of cell Di,j are replaced by the nu-
merical fluxes (marked with tilde) F̃, G̃, R̃, S̃
which are approximations of the physical fluxes.



Figure 2: Finite volume Di,j and the dual volume
V ′

k.

The approximations of the convective terms
sWk and the numerical viscous fluxes R̃k, S̃k on
edge k are central. The higher partial derivatives
of the velocity and the temperature in R̃k, S̃k are
approximated using dual volumes V ′

k (see Fürst
et al (2001)) as shown in Figure 2. The inviscid
numerical fluxes are approximated by the physi-
cal fluxes from the cell on the left side of current
edge in the predictor step and from the cell on the
right side of current edge in the corrector step.

The last term used in MC scheme is the Jame-
son artificial dissipation (Jameson et al, 1981;
Punčochářová et al, 2006):
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C1, C2 ∈ R are constants, in our case C1 =
1.7, C2 = 1.5 and the variables γ1, γ2 have the
form:
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The term of artificial dissipation has the third
order of accuracy then the second order of accu-
racy of the original scheme is valid. The vector
of conservative variables W can be computed at
a new time level tn+1:

Wn+1
i,j = Wn+1

i,j + AD(Wi,j)n. (7)

The grid of the channels have successive refine-
ment cells near the wall. The minimum cell size
in y - direction is ∆ymin ≈ 1/

√
Re to resolve

capture boundary layer effects.

5. NUMERICAL RESULTS

The numerical results were obtained for the fol-
lowing input data: Mach number M∞ = 0.012
(u′∞ = 4.116 ms−1), Re=5237, atmospheric pres-
sure p2 = 1/κ (p′2 = 102942 Pa) at the outlet
and frequencies of the wall oscillation f ′A=20 Hz
and f ′B=100 Hz. The computational domain con-
tained 450x50 cells.

The computation of the unsteady solution was
carried out in two stages. Firstly the steady so-
lution is realized, when channel between points
A and B have rigid wall in the middle position
of the gap. Then the steady solution is used as
initial condition for the unsteady simulations.

Figure 3(a) shows the steady numerical solu-
tion which is the same initial condition for both
unsteady solutions. The maximum of Mach num-
ber computed in the domain is Mmax = 0.173 at
x = 2.317 on the axis. Fig. 3(b) shows con-
vergence to the steady state solution computed
using the L2 norm of momentum residuals (ρu).
The convergence is satisfactory.

(a) Mmax = 0.173 at x = 2.317, g = 0.04

(b) Convergence to the steady state solution

Figure 3: The steady numerical solution in D -
M∞ = 0.012, Re=5237, p2 = 1/κ, 450x50 cells.

5.1. Solution for frequency 20 Hz

The unsteady solution for frequency of the wall
oscillation 20 Hz in the second period of the wall



oscillation is shown in Fig. 4 in several time lay-
ers. The highest Mach number Mmax = 0.591
was achieved in instant when the glottal width
is opening just after the minimum of the gap is
exceeded (in time t = 2π + 0.609π).
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(a) t = 2π, g = 0.04, Mmax = 0.173 at x = 2.318
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(b) t = 5/2π, g = 0.01, Mmax = 0.471 at x = 2.302
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(c) t = 3π, g = 0.04, Mmax = 0.162 at x = 2.317
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(d) t = 7/2π, g = 0.07, Mmax = 0.092 at x = 2.324
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(e) t = 4π, g = 0.04, Mmax = 0.173 at x = 2.318

Figure 4: The unsteady numerical solution of
airflow in D for wall oscillation - fA’=20 Hz,
M∞ = 0.012, Re=5237, p2 = 1/κ, 450x50 cells.
Results are mapped by iso-lines of Mach number,
by streamlines (lower part of the channel) and by
velocity vectors (upper part of the channel).

Figure 5 shows the changes of the gap g, Mach
number and the pressure in real time at the dis-
tance xC on the channel axis. The phase shifts
between the minimum glottal gap g and the max-
imum of Mach number and pressure fluctuations
are about 5.4 × 10−3 s and 2.9 × 10−3 s respec-
tively. It can be also seen that the flow becomes
periodical after the first period of the oscillations.

Figure 6 shows separation point area ratio
As/Amin and flow rate at xC over the second
cycle. The area As denote separation area (the
square of the width channel in separation point)

Figure 5: Dimensionless gap g, Mach number
and pressure at xC on the channel axis in real
time - f ′A = 20 Hz, M∞ = 0.012, Re=5237,
p2 = 1/κ, 450x50 cells.

and area Amin denote the square of the narrow-
est channel cross-section, i.e. the glottal width
at xC. The separation point is predicted to oc-
cur where the minimum pressure on the wall is
achieved. The values of the ratio varied from
As/Amin = 1.005, which occurred near the time
of maximum gap, to As/Amin = 16.99 which oc-
curred just after the gap opening phase starts.

5.2. Solution for frequency 100 Hz

The unsteady solution in the fourth period of the
wall oscillation is shown in Fig. 7 in several time
layers.

Figure 8 shows the Mach number along the axis
of symmetry of the channel in several time in-
stants during the oscillation period. Behind the
narrowest channel cross-section (x = xC) a sec-
ond peak of the Mach number is forming which
travels as a dying wave to the outlet. The high-
est Mach number Mmax = 0.557 was achieved in
the instant when the glottal width is opening just
after the minimum of the gap is exceeded in time
t = 6π + 0.84π.

Figure 9 shows the changes of the gap g, Mach
number and the pressure in real time at the dis-
tance xC on the channel axis. The phase shifts
between the minimum glottal gap g and the max-
imum of Mach number and pressure fluctuations
are about 1.7 × 10−3 s and 7.8 × 10−4 s respec-
tively. It can be also seen that the flow becomes



Figure 6: Separation point area ratio (solid line)
and flow rate (dashed line) at xC over the second
cycle - f ′A = 20 Hz, M∞ = 0.012, Re=5237, p2 =
1/κ, 450x50 cells.

periodical after the first period of the oscillations.

Figure 10 shows separation point area ratio
As/Amin and flow rate at xC over the fourth
cycle. The values of the ratio varied from
As/Amin = 1.003, which occurred near the time
of maximum gap, to As/Amin = 6.209 which oc-
curred just after gap opening.

6. DISCUSSION AND CONCLUSION

The special program code has been developed for
solving the 2D unsteady Navier-Stokes equations
for compressible fluid and used for the numerical
simulation of the airflow in the glottal region.

Due to a lack of experimental data, the re-
sults can be partially compared with the arti-
cle by Decker and Thomson (2007). They com-
puted flow separation point and glottal flow rate
in a geometrically different channel for the vibra-
tion frequency 447 Hz using FE model of the vo-
cal folds and incompressible Navier-Stokes equa-
tions. They found that the separation area ra-
tio was in the range As/Amin = 1.3 − 9.7 corre-
sponding to our results, the maximum flow rate
and maximum glottal width were in phase and
the minimum pressure lagged by approximately
1/10 of one period. This does not correspond to
our findings, where the maximum flow rate and
pressure are delayed related to the minimum gap.

(a) t = 6π, g = 0.04, Mmax = 0.154 at x = 2.309

(b) t = 13/2π, g = 0.01, Mmax = 0.238 at x = 2.294

(c) t = 7π, g = 0.04, Mmax = 0.361 at x = 2.309

(d) t = 15/2π, g = 0.07, Mmax = 0.119 at x = 5.516

(e) t = 8π, g = 0.04, Mmax = 0.154 at x = 2.309

Figure 7: The unsteady numerical solution of
airflow in D for wall oscillation - fB’=100 Hz,
M∞ = 0.012, Re=5237, p2 = 1/κ, 450x50 cells.
Results are mapped by iso-lines of Mach number,
by streamlines (lower part of the channel) and by
velocity vectors (upper part of the channel).

It could be caused by consideration of fluid com-
pressibility in our study.

A higher maximum flow rate was obtained for
higher frequency. From the position of sudden
jumps in the ratio As/Amin in the opening and
closing phases (see Figs. 6 and 10) it can be
deduced that the flow separation point is shifted
stream wise in closing phase comparing to the
glottis opening phase.
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Figure 8: Mach number along the channel axis in
several time instants. Data computed during the
fourth oscillation period- f ′B = 100 Hz, M∞ =
0.012, Re=5237, p2 = 1/κ, 450x50 cells.
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