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ABSTRACT 
This study presents a numerical and experimental 
investigation of an active controlling technique of the 
flow around a radially pulsating circular cylinder. The 
computations and experiments are performed for a 
relatively wide range of the Reynolds number from 
Re=300 up to 30×103. The validity of the proposed 
technique is thus assessed for both moderately low and 
high Reynolds numbers.   
It is particularly focused on the drag coefficient behavior 
when the cylinder is superimposed to radial oscillations. 
The flow response is investigated when the deforming 
amplitude is fixed equal to 5% the value of the initial 
cylinder radius and the forcing Strouhal number Stf is 
varied over the range (0 ≤ Stf ≤ 2).  
It is shown that, for a sufficiently high Reynolds number 
and a suitable value of the applied vibrating frequency 
the drag coefficient drops to reach negative values 
inducing the propulsion of the cylinder. 
 In addition, the characterizing topology of the 
corresponding flow regimes is accompanied by strong 
modifications—in the near wake and along the Von 
Kármán  eddy street—in response to the actuating 
technique. 

1. INTRODUCTION 
The problem of Fluid Induced Vibration, FIV, is 

a highly specialized subject in which numerous 
disciplines imbricate incorporating fluid mechanics, 
structural mechanics, vibrations, computational 
fluid dynamics, acoustics, statistics, smart 
materials…as discussed in Zdravkovich (1981) and 
Sarpkaya (2004) reviews. Such problems can occur 
in many engineering situations: bridges, stacks, 
transmission lines, aircraft control surfaces, offshore 
structures, heat exchangers, marine cables, towed 
cables, pipelines and other hydrodynamic and 
hydroacoustic applications. Much of the research 

into flow induced vibrations has been dedicated to 
the problem of a cylinder vibrating in line or 
transversely to a fluid flow. There are very few 
papers devoted to studying the case of a radial 
vibration where there is a uniform variation of the 
cylinder cross-section along the whole span of the 
body.       

Here, we set out to study the dynamics and 
vortex formation for a controlled cylinder, which is 
able to vibrate in the radial direction—variation of 
the cross-section diameter—according to a 
previously fixed sinusoidal law.   

2. NUMERICAL METHOD 
We perform simulations of an unsteady flow around 
a circular cylinder with a uniformly sinusoidal 
deforming function of the radius according to the 
following law: 
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where a and a0 are respectively the instantaneous 
and initial radii of the cylinder, Stf is the forcing 
Strouhal number imposed to the cylinder, am the 
maximum amplitude and t is time . 
 The cylinder is impulsively started into rectilinear 
motion with a constant infinite velocity U∞ in a two-
dimensional viscous incompressible fluid flow 
initially at rest. The Navier-Stokes equations are 
solved in stream function-vorticity formulation 
using polar coordinates. The turbulence effect is 
determined using the Smagorinsky subgrid scale 
model. Several simulations of flows around the 
cylinder have been performed in order to validate 
the numerical method, Hanchi et al. (2004).   
An LES method is used to represent the wake 
turbulence at Re=300. The approach used to 



calculate the flow field is the same as that in 
Hakizumwami (1994) and Al-Jamal et al. (2004) 
with differences to be described later. The finite 
difference scheme serves as a natural filtering 
operator with a filter width that is the local grid 
size. The filtered 2-D governing equations are the 
Poisson equation for the stream function ψ, 
Δ2ψ=-ω                                                  (2)                                                                                      
and the vorticity transport equation,  
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r and θ are the dimensional coordinates in the 
physical plane, t1 is the dimensional time, ν is the 
kinematic viscosity of the evolving fluid, νt is the 
turbulent eddy viscosity, u and v are the radial and 
circumferential velocity components, and ω is the 
vorticity. All of the flow variables are the large 
scale (resolvable) quantities.    
The effects of turbulence are taken into account by 
the eddy viscosity νt , which is determined by a 
subgrid scale model. In the present computations, 
we use the Smagorinsky model, 
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Cs is the Smagorinsky constant, Δ is the length scale 
(taken here to be the local mesh size) and Sij is the 
strain rate tensor.  
The initial cylinder diameter D0 and the infinite 
velocity U∞ are selected as length and velocity 
scales, respectively, with the non dimensional time t 
= t1 U∞/ D0. The non dimensional governing 
equations are:  
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operator andψ  is the streamfunction.        
Considering the non dimensional quantities:  
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Stf is the forcing Strouhal number and fs the 
dimensional cylinder shedding frequency. 
The initial conditions: 0~ =ψ  and ω = 0 at t = 0  
The boundary conditions:  
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The new system to resolve is then: 
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with the new boundary conditions set  
ξ = 0,     ψ = 0                                                   (09)  
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This set of the governing equations is resolved in a 
polar grid geometry and the parameters for the 
radial coordinate are taken as in Justesen (1991)                     

4.06.0 += ζer  



The following equations illustrate the drag 
coefficient in its components, skin and pressure 
drag computed as in Koumoutsakous et al. (1995). 
It is important to note that the drag force is directly 
linked to the forcing Strouhal number Stf. 
The pressure drag is given by: 
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The friction drag is computed from the vorticity on 
the cylinder surface as: 
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The total drag force on the body is thus:  
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The total drag coefficient of the body is evaluated 
by 
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where ω is the vorticity, ζ and θ are the polar 
coordinates in the computational field and ψ is the 
streamfunction. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

The validation of the computational method is 
executed, as suggested by Koumotsakos et al. 
(1995), using drag coefficient results rather than the 
streamlines configurations. Vorticity is expressed in 
second order derivatives of the velocity 
components, allowing thus detection of smaller 

scale variations which can be imperceptible in 
streamline patterns. 
For Re=550, fig. 2 and 3, our results correlates 
satisfactorily with those of  Koumotsakos et al. 
(1995). 

    
    
 
 
 

 
 
 

 

3. EXPERIMENTAL SETUP 
 

These experiments are carried out in an open circuit 
channel facility EV 280 type. It consists of a low 
speed air turbine (0.3 - 3 m/s) with a large Plexiglas 
tunnel, approximately 1.5 m long, 0.35m height and 
0.45 wide with optical access from all sides. The 
background streamwise disturbance level is less 
than 1% of the free stream velocity.  
The cylinder made of PVC (Polyvinyl Chlorine), 
fig. 4, is mounted horizontally traversing the test 
section with one end linked to an external motor 
destined to deliver rotating motion of the cylinder 
shaft. The inside of the test cylinder, as shown by 
fig. 4, consists of the cylinder shaft entrained in 
rotation motion (by means of the external motor), 
rotating cams appropriately transform the rotating 

Figure 2: Time evolution of the drag coefficient 
around an impulsively started circular cylinder for  
Re = 3000, Koumoutsakos and Leonard (1995) 

Figure 3: Time evolution of the drag 
coefficient around an impulsively started 
circular cylinder for Re=3000 
(Present study). 
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motion into diameter variation movement of the test 
cylinder walls according to the equation (01).  
 

 
 
 

 
 
 
  

Considering the cylinder dimensions, this law 
becomes:    
 
 a = 0.04 (1+│0.005sin (2π× Stf × t)│)              (18) 
 
Flow is thus controlled by the sinusoidal variation 
of the radius a. The internal deforming system of 
the cylinder and the test section dimensions 
imposed an aspect ratio of 5.62. The flow 
visualizations are carried out by releasing a 
horizontal smoke sheet in front of the cylinder 
created by injecting smoke through a tubing of a 
smoke generator enabling a steady leakage of 
smoke through the oncoming flow.  
The collection of flow visualization images is taken 
with a digital video camera. The rotating movement 
is generated by an electrical motor developing a 
rotation speed N varying from de 0 to 300 rpm. The 
cylinder axis is clamped to an electrical motor and 
constrained to move in a rotating motion to generate 
the vibrating dynamic of the cylinder cross section 
via the integrated mechanism inside the cylinder. 
The rotating cams convert the rotary motion of the 
drive shaft into sinusoidal motion of cylinder walls 
by an appropriate mechanism, fig.4. 
With this system, the corresponding forcing 
Strouhal number, Stf = f D/U∞, extends in the range 
from 0.7 to 15. D and U∞ are respectively the 
cylinder diameter and the infinite flow velocity.  
Flow visualizations are carried out to study the 
behavior of the cylinder near wake in response to 
the radial vibration controlling techniques. 
The present investigation of the near wake of a 
circular cylinder superimposed to diameter variation 
is an initial step towards understanding the intricate 
flow phenomena generated when such an active 
controlling technique is applied to a flow around a 
circular cylinder. 

 

4. RESULTS AND DISCUSSION 
 

A radial wave generated by the wall motion is 
forced to propagate from the surface of the cylinder 
to reach the outer flow as depicted in the figure 6. 
This wave, when travelling radially from the 
cylinder surface to the outer flow, fig. 6, is expected 
to modulate the instantaneous values of the 
streamwise and transverse velocity components u 
and v as illustrated by the fig. 5. The velocity time 
histories are shown for a cylinder mid span point 
located at 10D downstream. The modulated 
character of the velocity shows clearly the expanded 
influence of the pulsatile motion of the cylinder 
walls to the different cylinder surrounding regions 
(wake, shear layers, retarded flow).  
                       
 
 
 
 
 
 
 
 
 
 

 
 
 

       
 
 
 
 
                 
 
 

 
The boundary layer is subject to the walls vibration 
mode via the flow disturbance forcing function 
acting as an active vibrating damper. The flow 
instabilities are thereby excited and the flow 
destabilization, in this case, may be subsequent to 
the altered phase relation in the shedding 
mechanism of the Von Kármán eddies.  
The steady state stability theory led to the fact that 
wall displacement will induce a traveling pressure 
signal that, in turn, will modulate the mean velocity 

Cylinder shaftCams 

Figure 4: Operating setup /  
Cylinder deforming mechanism 

Figure 5: Velocity time histories for Re = 500 
(a) non controlled case 

(b) controlled case with Stf=2 

Figure 6: Visualisation of the flow around a 
circular cylinder for Re=20×103 

(a) stf = 0 (b)  stf = 0.02

Smooth and regular flow
The induced 
perturbation 
travelling from the 
cylinder surface to 
the outer flow

Circular cylinder  



profile. This is in line with the velocity time 
histories observed from the present computations, 
fig. 5. 
Oualli et al. (2004, 2007) considered in detail the 
primary and secondary vortices interplay. It is 
established that the diameter increasing-decreasing 
motion profoundly affect the shedding mechanism 
in such a way that the secondary vortices are 
continuously forced to cut links between the 
Kármán vortices and the body. These vortices are 
thus forced to disengage prematurely from the 
cylinder before reaching the scale and strength of 
the natural case. The cylinder wake dimensions are 
thus reduced as well as the scale and strength of the 
shed structures. This is expected to be the 
underlying phenomenon responsible of the 
substantial drag reduction revealed by the numerical 
computations, fig. 7.  
 

-4

-2

0

2

4

6

8

10

12

14

16

18

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Cdt_moy

Cdt_rms

 
 
 
 

 
 
In fact, when the forcing Strouhal number reaches, 
Stf ≈ 1.25, the mean value of the drag coefficient, 
Cd, becomes negative while the root mean square 
value increases correspondingly until Stf is equal to 
3.5. Over this threshold value, the drag coefficient 
evolves again to positive values.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
The flow characteristics of the near wake and the 
shedding mechanism behind an actively controlled 
circular cylinder are numerically and 
experimentally investigated. The controlling 
technique is applied over a wide range of the 
forcing Strouhal numbers.  
Flow visualizations are performed and ensured the 
ability of the generated perturbations to reach the 
outer flow via the boundary layer and the near wake 
flow.  
The controlling technique is found to influence all 
the parameters on which the turbulent shedding 
mode is identified to depend on. A correct 
adjustment of the controlling parameters, 
specifically the amplitude and the frequency of 
vibration, allows avoiding the occurrence of the 
aerodynamic synchronization and lock-in 
phenomena.  
The drag coefficient around the circular cylinder is 
expected to be subject of a drastic decreasing and 
negative values can be reached for a relatively wide 
range of the forcing Strouhal number.  
Further investigations need to be carried out in 
order to quantify accurately the induced 
modifications.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Evolution of the mean and rms 
values of  the drag coefficient around a 
controlled cylinder versus the applied 

frequency, Re = 500. 
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