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ABSTRACT

This paper describes the dynamic behavior of a
sphere tethered in a vertical water tunnel at criti-
cal and subcritcal Reynolds numbers. A 2 m×2 m
square-section water tunnel and two sphere mod-
els of diameter 0.2 m and 0.4 m were used. The
mass ratio was about 1.5 and the mass damping
parameter was close to 0. Violent vibrations with
large amplitudes in excess of 4.5 times the sphere
diameter were observed at the critical Reynolds
number. The behavior at subcritical Reynolds
numbers was similar to that reported in several
previous studies.

1. INTRODUCTION

When designing structures subject to flow,
it is desirable to evaluate flow-induced vibra-
tions (FIV) to confirm their long-term integrity.
Many studies have been conducted on the FIV
of cylindrical structures due to their practi-
cal importance, as comprehensively reviewed by
King (1977), Sarpkaya(1979, 2004), Bearman
(1984), Naudascher (1987), Matsumoto (1999),
Williamson et al. (2004), etc. They are also sum-
marized in the books of Chen (1987), Blevins
(1990), Naudascher and Rockwell (1994), and
others.

FIV of a sphere has also been studied by sev-
eral researchers. Williamson et al. (1997) in-
vestigated the behavior of a tethered sphere in
a horizontal water channel for the case of low
structural damping and low mass ratio. They
found that vortex-induced vibration (VIV) can
be caused in the above system. Furthermore,
the vibration amplitude depends mainly on the
reduced velocity U∗ = U/(fnd); where: U , fn

and d are the incidence flow velocity, the natu-
ral frequency in the fluid and the diameter of a
sphere, respectively. They also showed that the
Reynolds number and tether length have little
effect on the response amplitude. Jauvtis et al.
(2001) conducted similar experiments in a hori-
zontal wind tunnel for high mass ratios. In ad-

dition to the known VIV mode observed in the
range of 4 ≤ U∗ ≤ 12, they found two new vibra-
tion modes in the higher reduced velocity range.
One is another periodic vibration appearing in
the reduced velocity range of 20 ≤ U∗ ≤ 40. The
other is intermittent bursts of large amplitude
vibration for U∗ > 100. Provansal et al. (2005)
conducted experiments on a tethered sphere in
a vertical water tunnel and observed VIV with
circular or elliptical trajectories in the plane per-
pendicular to the flow. Govardhan et al. (2005)
conducted free-vibration tests on both a tethered
sphere and an elastically supported sphere in a
flow, and deduced that there exists a critical mass
ratio, below which large amplitude VIV contin-
ues to infinite U∗. These previous studies how-
ever were limited to subcritical Reynolds num-
bers. FIV of a sphere at high Reynolds number
is not yet fully understood.

In this study, free-vibration tests on a sphere
tethered in a vertical water tunnel were con-
ducted up to critical Reynolds number.

2. EXPERIMENTAL SETUP

Figure 1 shows schematically the experimental
arrangement employed herein.

A large-scale gravity-driven vertical water tun-
nel in CRIEPI (Nishihara et al., 1998) was used
for the tests. The water tunnel system consists of
a 1000 m3 underground reservoir, an upper cir-
cular head tank of 3 m height and 12 m diameter,
a vertical water tunnel section and four control
valves for draining. The test section is 2 m×2
m square. In preparation for use of the tunnel,
the valves are closed and water is pumped from
the underground reservoir into the head tank.
When the water level in the head tank reaches
the prescribed level, the pump is stopped. When
the valves are opened, gravity induces the wa-
ter to flow down thorough the test-section and
into the underground reservoir. The extent to
which the valves are opened controls the flow
rate. The descent rate of the water level in the
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Figure 1: Schematic arrangement of the experi-
mental setup.

head tank, as measured by a water level gauge
(CHT4-300, KENEK), was correlated to the in-
cident flow velocity using preliminary Pitot tube
measurements. During the free-vibration tests,
the flow velocity was obtained from the descent
rate of the head tank water level.

In the tests, a sphere model was suspended
from a load cell (LTZ-50KA or LTZ-200KA, KY-
OWA) fixed to one of the laboratory roof beams
and located in the center of the water tunnel test
section. Stainless steel wire of 14 m length and
either 1.5 mm or 3 mm diameter was used to sus-
pend the sphere. The sphere model represents
a pendulum in both the x and y directions, as
shown in Fig. 1. The motion of the sphere was
recorded using a digital movie camera, and the
vibration amplitude and frequency were obtained
from these movies. It should be noted that the
camera was set as shown in Fig.1. Consequently,
only the y-direction vibration amplitude was es-
timated. During the tests, the drag force on the
sphere was also measured using the load cell.

Two sphere models were used for the tests.
Both spheres were smooth stainless steel shells
filled with mortar and plastic resin. Table 1
shows the specifications of the models and the
experimental conditions. Table 2 shows a com-
parison between the conditions for the experi-
ments herein and those for previous studies by

Figure 2: Sphere model B in situ.

Table 1: Sphere model specifications and experi-
mental conditions.

Model A Model B
Diameter d [m] 0.4 0.2
Mass ms [kg] 51 5.9
Mass ratio m∗ 1.5 1.4
Wire length L [m] 14 14
Wire diameter [mm] 3 1.5
Natural period

in the water Tnw [s] 14.9 16.3
Damping ratio ζsw 1.6 × 10−4 8 × 10−4

Flow velocity U [m/s] 0.05∼0.9 0.04∼2.0
Reduced velocity U∗ 1.9 ∼ 35 3.4 ∼ 160
Reynolds number Re ∼ 3 × 105 ∼ 4 × 105

other researchers. The mass ratio m∗, the rel-
ative tether length L∗, the reduced velocity U∗,
and the Reynolds number Re in the tables are
defined:

m∗ = ms/md, md = ρwπd3/6, (1)

L∗ = L
′
/d, L

′
= L + d/2, (2)

U∗ = U/(fnwd), (3)
Re = Ud/ν (4)

where md is the displaced fluid mass, and ρw and
ν are the density and kinematic viscosity of wa-
ter, respectively.

Neglecting the added mass of air, the natural
frequency fna of the pendulum system in air can
be expressed:

fna =
1
2π

√
g

L′ (5)

In preliminary tests, the free vibration frequency
of a sphere in air agreed well with the above equa-
tion. Taking account of the buoyancy force and
added mass, the natural frequency fnw in water
was estimated from:

fnw =
1
2π

√
g

L′
m∗ − 1

m∗ + CA
(6)



Table 2: Comparison of experimental conditions for a tethered sphere.

Test section m∗ L∗ Max. Re

Experiments herein Vertical water tunnel 1.4, 1.5 35.5, 70.5 4 × 105

Williamson et al. (1997) Horizontal water channel 0.082, 0.73 3.83 - 9.28 1.2 × 104

Jauvtis et al. (2001) Horizontal wind tunnel 80, 940 105

Provansal et al. (2005) Vertical water tunnel 2.43 9, 21 9 × 102

Provansal et al. (2005) Horizontal wind tunnel 55.8, 61.7 2 6 × 102

Govardhan et al. (2005) Horizontal water channel 0.45 5.9, 13.8 1.2 × 104

where CA is the added mass coefficient and, for
a sphere, is 0.5. The natural period in Table 1 is
the reciprocal of the natural frequency.

The structural damping ratio ζsa was obtained
from the pendulum motion decay rate in air and
was about 2×10−4 and 1×10−3 for models A and
B, respectively. Taking the added mass into ac-
count, the structural damping ratio ζsw in water
was estimated to be 1.6 × 10−4 and 8 × 10−4 for
models A and B, respectively. The mass damping
parameters m∗ζsw were close to 0.

According to Achenbach (1972), the critical
Reynolds number for a stationary sphere is 3.7×
105. The maximum Reynolds number in the tests
herein was 4 × 105, thus exceeding the critical
Reynolds number.

Figure 2 shows an in situ photograph of the
smaller sphere model B.

3. EXPERIMENTAL RESULTS

3.1. Results for the large sphere model A

Figure 3 shows the relative amplitude A∗
y; where:

A∗
y = Ay/2d and, in turn, Ay is the peak-to-

peak amplitude of the sphere vibration obtained
from the recorded movies over several cycles. The
abscissas show both the reduced velocity U∗ and
the Reynolds number Re.

At U∗ = 1.9, the sphere was almost at rest.
For U∗ > 4, the sphere started to vibrate and
performed circular or elliptical trajectories in the
x-y plane. This agrees with the results of previ-
ous studies and the observed behavior is prob-
ably VIV. Up to U∗ < 22, similar vibrations
were observed; the vibration amplitude gradu-
ally increasing with reduced velocity. The rela-
tive amplitude seems to saturate at about 1.5.
However, further increase of the reduced velocity
results in a sudden increase in vibration ampli-
tude. Furthermore, in the cases of Re > 2 × 105,
the sphere contacts the side wall repeatedly. This
suggests that the maximum vibration amplitude
is well in excess of double the sphere diameter.

0 5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

0 1x105 2x105 3x105

The sphere model
hits the side wall

 

R
e
la

ti
ve

 a
m

p
lit

u
d
e
  
A y

*

Reduced velocity  U*

Reynolds number  Re

Figure 3: Response amplitude of sphere model A.

Figure 4 shows the mean drag coefficient C̄D

measured during the tests. C̄D is defined:

C̄D = F̄D/
(

1
2ρwU2A⊥

)
, A⊥ = πd2/4 (7)

where F̄D is the mean drag on a sphere. For
Re < 5 × 104, the drag force on the sphere is less
than 1/2000 of the rated capacity of the load
cell and reliable output could not be obtained.
For 5 × 104 < Re < 1.5 × 105, the mean drag co-
efficient was 0.7∼0.8, which is larger than that
for a stationary sphere at subcritical Reynolds
numbers. However, the mean drag coefficient
of a sphere in VIV is about 0.8 according to
Williamson et al. (1997), and suggests that the
results of the experiments herein are reason-
able. For Re > 1.5 × 105, the mean drag coeffi-
cient gradually decreases as Re increases reach-
ing 0.2 at Re = 3 × 105. This suggests that the
sudden increase in the vibration amplitude for
Re > 2.0 × 105 is closely related to the critical
Reynolds number.

Figure 5 shows the dimensionless frequency f∗

(defined as f/fnw; where: f is the sphere’s vibra-
tion frequency). The solid line in the graph shows
f∗ = fs/fnw; where: fs is the vortex-shedding
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Figure 4: Drag coefficient of sphere model A.
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Figure 5: Response frequency of sphere model A.

frequency from a stationary sphere. The dimen-
sionless frequency gradually rises with reduced
velocity. This is consistent with the results of
previous studies by Williamson et al. (1997) and
Govardhan et al. (2005) for low mass ratio.

3.2. Results for the small sphere model B

The sphere model A contacted the side wall of
the water tunnel for U∗ > 27. Consequently, ex-
periments for sphere model A were not conducted
at higher reduced velocities to avoid damage to
the test facility. In order to investigate the be-
havior of a tethered sphere in the higher reduced
velocity range, the smaller model B was used.

Figure 6 shows the relative amplitude A∗
y ver-

sus reduced velocity and Reynolds number. Sim-
ilar vibrations (performing circular or elliptical
trajectories) to those for sphere model A were ob-
served. The vibration continued in the higher re-
duced velocity range and, at around U∗ = 80, the
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Figure 6: Response amplitude of sphere model B.
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Figure 7: Drag coefficient of sphere model B.

relative amplitude seemed to saturate at about
1.0. However, at U∗ > 80, the vibration be-
came irregular. Moreover, an offset in the mean
position of the sphere appeared and intermit-
tently changed every several cycles. Finally, for
Re > 2.5 × 105, the sphere again contacted the
side wall; again showing that the maximum dis-
placement is well in excess of 4.5 times the sphere
diameter.

Figure 7 shows the mean drag coefficient mea-
sured during the free vibration tests. For 4 ×
104 < Re < 1.5 × 105, the mean drag coeffi-
cient was about 0.7 and is reasonable for a sphere
in VIV at subcritical Reynolds numbers. For
Re > 1.5 × 105, the mean drag coefficient grad-
ually decreased as Re increased, reaching about
0.15 at Re = 2.5×105. The mean drag coefficient
of sphere models A and B agree well.
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Figure 8: Response frequency of sphere model B.

Figure 8 shows the dimensionless frequency f∗

which gradually increased with reduced veloc-
ity. Additionally, the rate of increase appears
to change at around U∗ = 20 and goes on to
saturate at 5 at U∗ > 80.

4. DISCUSSION

4.1. Vibration mechanism

According to Jauvtis et al. (2001) and Govard-
han et al. (2005), FIVs of a tethered sphere
can be classified into four modes. Modes I and
II are vortex-induced vibrations appearing for
StU∗/f∗ < 2; where: St is the Strouhal number
of a stationary sphere. A highly periodic vibra-
tion (mode III) also appears for 3 < StU∗/f∗ <
8, and is categorized in ‘movement-induced vi-
brations’ (Naudascher and Rockwell, 1994). For
much higher reduced velocities, mode IV vibra-
tion can occur (Jauvtis et al., 2001). This has
large amplitude and less periodicity and its mech-
anism is not fully understood.

In the present experiments, the periodic vibra-
tions of sphere models A and B, as observed at
U∗ < 20, correspond to mode I and II VIV. Ad-
ditionally, the vibration amplitude of sphere A
was 1.5 times larger than reported in previous
studies. The difference in amplitude between the
present and the previous experiments is possibly
caused by the difference in Reynolds number, the
mass damping and the tether direction to flow.
The vibration of sphere B for 20 < U∗ < 100
was presumably mode III. Though the boundary
between modes II and III is not clearly distin-
guishable in Figures 6 - 8, the difference between
the two modes does appear in the effective added
mass as described in the section 4.2.

The vibration observed for Re > 2.0 × 105

was less periodic, and may be that of mode
IV as reported by Jauvtis et al. (2001). How-
ever, the vibration occurred around the critical
Reynolds number for both spheres A and B, inde-
pendently of the reduced velocity. The vibration
amplitude was much larger than that of mode
IV. Hence, the vibration is probably peculiar to
the regime of critical Reynolds number, and the
mechanism differs from that of mode IV. It is
well known that, in the critical Reynolds num-
ber range, the flow separation point for a sphere
moves aft and the wake width shrinks due to
the turbulence transition of the separated shear
layers. In this case, periodic vortex-shedding is
not observed, and the wake tends to tilt against
the flow direction, resulting in a lateral fluid
force on the sphere (Taneda, 1978; Constanti-
nescu, 2004). When a steady lateral fluid force
F̄L = 1

2ρwU2A⊥C̄L acts on a sphere, the sphere
can contact with the wall for the condition:

F̄L

(ms − md)g + F̄D
>

r − d/2
L′ (8)

where r is the distance between the center of
the test section and the side wall. The inequal-
ity above is obtained from the balance of steady
forces on a tethered sphere. The inequality (8)
is satisfied when C̄L ≥ 0.1 and U ≥ 0.9 m/s
in case of the sphere A; and when C̄L ≥ 0.05
and U ≥ 1.2 m/s in case of the sphere B. In
the critical Reynolds number range, 0.05∼0.1 are
possible values for C̄L. In the experiments, the
spheres do not contact the wall steadily, but vi-
brates against and hits the wall repeatedly. The
vibration may be caused by intermittent switch-
ing of lateral force. In this case, the vibration is
categorized as buffeting. The vibration may also
be caused by the wake tilt synchronizing with
the sphere motion. In this case, the vibration
is categorized as ‘movement-induced vibrations’.
In either case, the vibration is probably specific
to the critical Reynolds number range.

4.2. Frequency characteristics

In the same manner as Govardhan et al. (2005),
the effective added mass mEA is derived from the
dimensionless frequency f∗ as follows. Taking
into account of the mean drag force F̄D, which in-
creases the restoring force, the natural frequency
of the present system can be expressed:

f =
1
2π

√
(ms − md)g + F̄D

(ms + mEA)L′ (9)
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Figure 9: Effective added mass coefficient.

Equation (9) can be written:

f =
1
2π

√
g

L′
m∗ − 1

m∗ + CEA

(
1 +

3
4
C̄DF 2

r

)
(10)

where: CEA is the effective added mass coeffi-
cient, expressed: mEA/md; and Fr is the Froude
number, defined:

F 2
r =

U2

(m∗ − 1)gd
(11)

By using eqs. (6) and (10), the effective added
mass coefficient can be derived:

CEA =
m∗ + CA

f∗2

(
1 +

3
4
C̄DF 2

r

)
− m∗ (12)

Figure 9 shows the estimated values of the ef-
fective added mass coefficients versus StU∗/f∗;
where: St is 0.18 at subcritical Reynolds numbers
(Achenbach, 1974). For sphere A, CEA reduces
with increasing StU∗/f∗, reaching about −0.6 at
StU∗/f∗ = 2 ∼ 2.5. This agrees well with the
results of Govardhan et al. (2005). However, for
sphere B, a sudden drop in CEA to about −1.2
appears at StU∗/f∗ = 2.2 and suggests that the
frequency characteristics of mode III differ from
those of mode II.

5. CONCLUSIONS

Free vibration tests of a sphere tethered in a ver-
tical water tunnel were conducted up to the crit-
ical Reynolds number. As a result, violent vi-
brations with unexpectedly large amplitude were
observed at the critical Reynolds number. This is
probably peculiar to flows in the critical Reynolds
number range. At subcritical Reynolds num-
bers, similar sphere vibration behavior to that

reported in several previous studies was observed.
The results also suggest that the frequency char-
acteristics of the vibration in the higher reduced
velocity range (mode III) differ from the vortex-
induced mode II vibration.
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