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ABSTRACT

In this paper the coupling of a structural solver
for elongated structures in large deformations
and in large displacements with the flow solver
ISIS-CFD is presented. ISIS-CFD is a 3D fi-
nite volume solver based on the incompressible
unsteady Reynolds-averaged Navier-Stokes equa-
tions. The finite element structural solver is also
3D and uses Euler-Bernoulli or Rayleigh kine-
matics with the Cosserat hypothesis. A remesh-
ing procedure based on the pseudo-solid approxi-
mation is detailed. This coupled algothim is first
validated and then applied to a geometrically sim-
ple 2D test case.

1. INTRODUCTION

Elongated structures, like pillars supporting oil
platforms or cables and risers, are frequently met
in the industrial domain. The stakes of the
fluid/structure interaction (FSI) around these
bodies are therefore important. This is the rea-
son why the CFD team of the Fluid Mechanics
Laboratory from Centrale Nantes has started the
development of FSI for elongated structures with
the help of its in-house RANSE solver ISIS-CFD.

To carry out FSI modelling, four points are
essential to address :

• The transfer of the efforts exerted by the
fluid on the structure,

• The transfer of structure displacements to
the fluid field,

• The fluid domain remeshing,

• The resolution of the dynamic structure
problem.

2. ISIS-CFD, THE FLOW SOLVER

The ISIS-CFD flow solver, developed by the
EMN (Equipe Modélisation Numérique) of the

Fluid Mechanics Laboratory of the Ecole Cen-
trale of Nantes, uses the incompressible un-
steady Reynolds-averaged Navier-Stokes equa-
tions (RANSE). The solver is based on the finite
volume method to build a spatial discretization of
the transport equations. The face-based method
is generalized to two-dimensional or three di-
mensional unstructured meshes for which non-
overlapping control volumes are bounded by an
arbitrary number of constitutive faces. The ve-
locity field is obtained from the momentum con-
servation equations and the pressure field is ex-
tracted from the mass conservation constraint, or
continuity equation, transformed into a pressure-
equation. A second-order accurate three-level
fully implicit time discretization is used. Surface
and volume integrals are evaluated using second-
order accurate approximation. In the case of
turbulent flows, additional transport equations
for modelled variables are solved in a form simi-
lar to the momentum equations and they can be
discretized and solved using the same principles.
Several turbulence models, ranging from the one-
equation Spalart-Allmaras model (cf P. Spalart
and S. Allmaras (1992)), two-equation k−ω clo-
sures (cf F.R. Menter (1993)), to a full stress
transport Rij − ω model (cf G.B. Deng and al
(2005)), are implemented in the flow solver to
take into account the turbulence phenomena.

3. FLOW FIELDS TRANFER
BETWEEN SOLID AND FLUID

MESHES

One of the difficulties in fluid/structure interac-
tion is that the fluid and solid meshes do not
match at the body boundary (cf A. de Boer
et al. (2007)). In the special case of elongated
structures, these ones are modelled by the beam
theory. The solid grid is consequently the beam
neutral line, whereas the structure is viewed from
the fluid domain by a set of faces around this neu-
tral line. In order to calculate the fluid efforts on
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Figure 1: Fluid efforts interpolation on the beam

the beam, an interpolation is needed. The global
conservation of the efforts being the most impor-
tant property to fulfill, an ad-hoc interpolation
has been developed.

The connectivities between fluid boundary-
nodes and the beam sections are generated once
at the launch of ISIS-CFD. They allow to deter-
mine to which part of the beam the orthogonal
projection of the fluid boundary-nodes belongs.
One has also the possibility to know the orthog-
onal projection of the beam nodes on the fluid
boundary faces. With these data, the efforts are
linearly interpolated. A fluid face, which entirely
belongs to a beam section, provides the total fluid
effort. In case of an orthogonal plane to a beam
node cutting a fluid face, this one is virtually di-
vided and the efforts are linearly distributed be-
tween the corresponding beam parts (cf fig. 1).

After the calculation of the beam deformation,
this one is transmitted to the fluid grid with the
same connectivities which were used before. The
fluid mesh nodes which belong to the structure
are displaced according to the beam kinematics.

4. FLUID DOMAIN REMESHING

At the end, the fluid mesh must be deformed in
order to take into account the new beam po-
sition. ISIS-CFD integrates several remeshing
tools. The first is an analytic regridding based
on a weighting coefficient (cf fig. 2) which can
be used with confidence for small and moderate
deformations (cf A. Leroyer and M. Visonneau
(2005)). Another regridding module has been de-
veloped in order to account for large deforma-
tions. This one is based on a pseudo-solid ap-
proach to build a consistent and robust unstruc-
tured grid deformation strategy. The fluid do-
main is considered as a linear elastic solid struc-
ture obeying structural equations which are lin-
earised and used even in the case of large defor-
mations since one does not need to follow the
physics for this virtual elastic grid. The control
parameters are the non-uniform Young modulus
E, Poisson Coefficient µ and shearing coefficient
G.

0

0
.
2

0
.
4

0
.
6

0
.
8

1

Figure 2: weighting coefficient calculated with a
resolution of a lagrangian

4.1. Discretisations

In order to solve the structural problem, several
behaviour laws have been studied. At first, a
simple one, based on the isotropic case, has been
implemented:

⇒
σ= 2µ

⇒
ε +λtr(

⇒
ε )I

So we have :∫ ∫ ∫
V

div(
⇒
σ )dV = 0⇐⇒∫ ∫

S
µ

⇒

grad
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⇒

div(
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where
−→
U is the field of cell centers displacements,

with 8>><>>:
µ =

E

2(1 + ν)

λ =
νE

(1 + ν)(1− 2ν)

This first deformation approach is easy to im-
plement, but does not allow to control the shear
stress coefficient G (in this isotropic case G =
Giso). With this coefficient and the introduced
structural anisotropy, one can theoretically main-
tain a rigid movement near the body and keep
the orthogonality of cells near the body wall, a
highly desirable property for finite-volume dis-
cretizations. Therefore, a 2D/3D volume finite
discretisation using G has been developed :

For an orthotropical (orthogonal +
anisotropic) material, the following behaviour
law is given (hat notation) :
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with K = E(1−ν)
(1+ν)(1−2ν)

and εxy = 1
2
( ∂U

∂y
+ ∂V

∂x
) where

Gij is the shear stress coefficient in the
−→
i and

−→
j

directions.
This symmetrical matrix gives an anisotropic

discretisation with main directions. But the goal
is to maintain the orthogonality of the mesh



around the structure during the deformation. So,
one defines this matrix in a local basis (−→n ,

−→
t2 ,
−→
t3 ),

with the vector −→n directed along the gradient
vector of the weighting coefficient (their isovalues
follow the body surfaces curves as shows in fig.
2). So the main deformation directions are local.
And consequently one has a local behaviour de-
pending to the local orientation of body surface.
The general problem is expressed with the carte-
sian basis, so the behaviour law matrix must be
rewritten in the cartesian basis.

Let P be the basis transformation matrix
(−→x ,−→y ,−→z ) to (−→n ,

−→
t2 ,
−→
t3 ), one has :

σ(−→x ,−→y ,−→z ) = Pσ
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P−1
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#
and consequently :
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The Cij coefficients have been calculated with
MAPLE.

One notices that the Gij coefficients are in-
dependent. Gnt2 and Gnt3 are chosen equal and
stronger than the isotropic value, instead of Gt2t3

which is taken equal to Giso = E
(1+ν) . Therefore,

the behaviour of a transverse isotropic material
is obtained.

In order to have the mode implicit resolution
of the problem, one rewrites the previous matrix
so that the isotropic term appears :
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The first matrix is calculated as the isotropic
case (implicit calculation). The second matrix is
explicitly taken into account.

This remeshing technique allows to update a
grid around deformable (cf fig. 3) or unde-
formable bodies. With the use of the shear stress
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Figure 3: 3D meshes deformations around an
eel-like body (ROBEA project) (cf A. Leroyer
(2004))

coefficient G one can maintain a rigid movement
near the body and so keep the orthogonality of
cells near the body wall. One has also the possi-
bility to couple this regridding process with one
of the others in order to obtain a better control of
the deformation. This module uses the same dis-
cretisation tools as the fluid solver and the con-
nectivities are identical. Moreover, the mesh de-
formation is entirely parallelized using MPI com-
munication tools.

5. THE STRUCTURAL SOLVER

5.1. Modelisation and hypothesis

With the distribution on the beam of the efforts
exerted by the fluid, one can calculate its defor-
mation, i.e. the displacements of its nodes. The
structural solver is a “black box” based on the
work of F. Boyer and D. Primault (cf F. Boyer
(2004) and F. Boyer (2005)). The structural
solver implemented into ISIS-CFD is based on
the Cosserat approximation. The beam is consid-
ered as a monodimensional medium, built with a
continuous stack of rigid micro-solid structures
(cf E. and F. Cosserat (1909)). In this approx-
imation, the beam sections must be rigid and
plane. Without any other hypothesis, this kine-
matic is called “Timoshenko Reissner” (cf W.
Weaver, Timoshenko and al (1990) and E. Reiss-
ner (1973)).

In our case, the beams are fine and elongated
(cables, risers...). Then the Kirchoff hypothesis
can be used with confidence : the beam sec-
tions are orthogonal to the neutral line of the
beam. With this kinematic called “Kirchoff”,
two beam models are built : the “Rayleigh”
model (cf L. Meirovitch (1967)) and the “Euler-



Bernoulli” model (cf L. Meirovitch (1967)). In
this last model, the angular kinetic energy of the
beam sections is neglected. With this simplifi-
cation, the analytic equations are lighter. But a
problem arises when the beam is free to rotate
on itself.

The structural solver integrates both beam
models resulting from the Kirchoff hypothesis :
the “Rayleigh” and “Euler-Bernoulli” models.

5.2. The Euler-Bernoulli & Rayleigh kine-
matics

The Rayleigh kinematics (cf F. Boyer (2004)
and F. Boyer (2005)) allow to solve correctly
the cables problems thanks to the flexion-torsion
coupling. Indeed the numerical solution is based
on a variational formulation of the Kirchoff kine-
matics and on an exact modelisation of the most
complex geometrical non-linearity : the flexion-
torsion coupling (cf J.C. Alexander and Antman
(1982)). An important notion appears here :
the geometrically exact approach. This expres-
sion comes from Simo (cf J.C. Simo (1985)) and
means that the approximations are done at the
end of all the developments.

This kinematic needs a parametrisation. The
rotation parametrisation is the most complex. In
the Reissner kinematic case, the SO3 Lie group
is used. But the Kirchoff constraint reduces this
space to a bidimensional SO3 subspace. This one
is parametrized by the position field of the beam
neutral line and becomes the SO2 plane rotations
group. At first the rotation field is changed to
the composition of two rotations : the movement
of the beam neutral line only and the movement
around this neutral line. Several parametrisa-
tions can be done for the rotation angles. In
the implemented structural solver, the Eulerian
parametrisation is used, due to its relative sim-
plicity.

5.3. Validation test cases

5.3.1. Static validation

At first, in order to validate the solver imple-
mentation statically, a very simple 2D test case
has been chosen: a beam with a uniform load.
The implemented structural solver can treat the
Euler-Bernoulli and Rayleigh kinetics which are
compared with the help of this test case.

The comparison between the numerical and
theoretical results shows that the solver consis-
tently gives a numerical result which tends to-
wards the theoretical value when the structural

Load (q) q=10 q=100
Time step (h)

h=0.1 0.004907 0.048334
h=0.02 0.004252 0.043551
h=0.01 0.004312 0.042896

Theoretical value 0.0042857 0.042857

Table 1: Euler-Bernoulli static validation (SI
units).

Load (q) q=10 q=100
Time step (h)

h=0.1 0.004837 0.048335
h=0.02 0.004369 0.043553
h=0.01 0.004320 0.042970

Theoretical value 0.0042857 0.042857

Table 2: Rayleigh static validation (SI units).

mesh is refined (cf tab. 1 and 2). With the Euler-
Bernoulli kinetics, the convergence is 1.45 order
for a load of 10 and 1.18 order for a load of 100.
With the Rayleigh kinetics, the convergence is
1.2 order for a load of 10 and 1.6 order for a load
of 100.

5.3.2. Dynamic validation

Then a dynamic validation has been performed :
an embedded beam is loaded during a short pe-
riod at the beginning, then is released in a fluid
at rest (cf fig. 4). In the vacuum the beam will
oscillate without damping at a frequency equal to
the first theoretical eigenfrequency (cf C. Pert-
ersen (1996)) :

f1 = 0.5595
1
L2

√
EI

m/L

In the following test-case the beam length L is
set to 1m, its thickness d to 0.01m, its volumic

B

d

L

Fluid at rest

A

Figure 4: Free embedded (point A) beam in a
fluid at rest
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Figure 6: Eigenfrequencies of the beam oscilla-
tions

mass ρbeam = 2250 SI and its Young modulus
E = 3500MPa. Consequently, the theoretical
first eigenfrequency f1 is : f1 = 2.01Hz. In the
figure 5 we can see the evolution of the point B.
The oscillations frequency is around 2.04Hz (cf
fig. 6) which gives an relative error inferior to
2%.

When the beam oscillates in a fluid, like air
or water, the oscillations are damped and this
first eigenfrequency is modified. In air (with a
viscosity set to 0.2 SI) this one is around 1.8Hz.
The higher is the fluid viscosity, the higher is the
damping of the oscillations important.

5.4. First test-case and results

In this test-case the same embedded beam is
used. But it is suddenly loaded by a constant
incoming flow and oscillates as long as it reaches
a steady deformation state (cf fig. 7). The test-
case conditions are presented in the table 3. The
resulting Reynold number is Re = 50.

The used fluid mesh is a totally unstructured
mesh which contains around 30000 cells (cf fig.
8). The line which is the solid mesh is composed
of 100 segments.

The time increment is δt = 0.001s in order to
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Figure 7: Embedded beam in a fluid in movement

Length L = 1 m
Thickness d = 0.01 m

Young modulus E = 3500 MPa
Solid volumic mass ρs = 1200 kg m−3

Fluid volumic mass ρf = 1 kg m−3

Dynamic viscosity µf = 0.2 Pa s
Constant inflow velocity U = 10 m s−1

Table 3: Test-case conditions (SI units).

reach approximatively more than 300 time steps
per oscillation period, which is a good value to
have a good accuracy.

The results show that the beam oscillates dur-
ing several seconds and then finds a steady state.
The free extremity (point B) moves aproxima-
tively 1.5cm from the free steady state (cf fig.
9). The flow at the steady state has a big recir-
culation to the rear of the beam and two little on
each sides (cf fig. 10).

6. CONCLUSION

In this paper the methods to perform simulations
coupling a RANSE solver with a structural solver
for elongated bodies in large deformations and

Figure 8: Mesh around the beam and far away
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Figure 10: Flow around the deformed beam at
the steady state

large displacements have been presented. This
one is based on the Cosserat hypothesis with the
Rayleigh or Euler-Bernoulli kinematics.

A general remeshing procedure is also detailed.
This one is based on the pseudo-solid approxima-
tion and allows to control the mesh deformation
through a particular local behaviour law.

First the 3D structural solver was verified with
2D standard test-cases. Then the coupled code
was used to an example with 2D simple geometry.

In the future in order to improve the FSI into
ISIS-CFD, the replacement of the Newmark al-
gorithm for the time integration is planned, be-
cause it gives some high frequencies perturba-
tions. More validation 2D & 3D test-cases will
be performed with comparisons to experimental
data.
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modélisation numérique de la cavitation.
ftp : //ftpa.ec−nantes.fr/pub/DMN/Thesis/
these leroyer.pdf

F. Boyer and D. Primault, 2004, Finite element
of slender beams in finite transformations : a
geometrically exact approach. In International
Journal for numerical methods in engineering 59:
669-702.

F. Boyer and D. Primault, 2005, Finite element
of non-linear cables : applications to robotics. In
Far East Journal of Applied Mathematics 19: 1-
34.

E. and F. Cosserat, 1909, Théorie des corps
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