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ABSTRACT

Finding the stationary points and determining
stability characteristics of a system is an im-
portant undertaking in any attempt to under-
stand or to modify its dynamical properties. The
importance can be understood and demonstrated
with an example describing the aeroelastic system
with gyroscopic as well as with non-conservative
terms. We consider a non-linear system with two
degrees of freedom representing an interaction of
bending and torsion of a slender beam vibrating
in a cross flow. The cross-section shape makes
possible to separate principal effects and the cou-
pling of aeroelastic modes is caused solely by the
flow around the structure. The system is auto-
parametric and permits a semi-trivial solution of
two types, one of which being unstable. Apart
from that the response may be non-trivial in both
phase coordinates.

Conditions of existence of stationary points
and their types are investigated using primarily
the Lyapunov function. The procedure presented
is applicable for Hamiltonian, holonomic sys-
tems which are conservative, or non-conservative
with certain limitations on the generalised forces.
The singular points are classified with respect to
their asymptotically stable/unstable character to-
gether with adequate physical interpretation. At-
tention is paid to attractive and repulsive ar-
eas surrounding these points. Using this back-
ground several types of post-critical response in
non-linear formulation will be presented, such as
stable/unstable limit cycles with various ratio of
amplitudes of both components, or quasi-periodic
response processes having a form of symmetric
or asymmetric beating effects with strong energy
trans-flux between degrees of freedom.

1. INTRODUCTION

The most fundamental task of bridge design with
regards to the aero-elasticity lies in the formu-
lation of the self-excited forces and interaction
with the response. From the theoretical point

of view, this interaction leads to the origin of
non-conservative forces contributing to the stiff-
ness matrix and in the same time to the origin
of forces influencing a damping matrix in linear
and non-linear way.

Various levels of the non-linearity strongly in-
fluence internal mechanism of self-excited oscil-
lations. On the linear (zero) level as a particu-
lar case, two parallel ways, each of them bring-
ing some advantages, can be formulated. The
duality of time and frequency domain formula-
tion of the self-excited wind forces was and still
is investigated, see e.g. Caracoglia and Jones
(2003). In the time domain formulation of self-
excited forces on a bridge deck, indicial func-
tions are usually adopted, see e.g. Costa (2007)
and others. Aeroelastic problems including the
modelling of aerodynamic forces excited by non-
stationary wind fields and considering of non-
linearities in both structural dynamics and aero-
dynamics are summarized in Chen and Kareem
(2003). For the purpose of direct determina-
tion of critical velocities in engineering computa-
tions the ”combined time/frequency” system can
be used despite the iterative methods are used.
From mathematical point of view, however, such
procedure is considerably problematic, as it im-
plies too many assumptions which probably will
not be complied with as soon as the response has
lost the character of a purely harmonic move-
ment with clearly expressed frequency, see e.g.
Náprstek (2000).

The research has succeeded in understanding
most principal characteristics of aeroelastic sys-
tems. Although some approaches are able to pre-
dict some lower limits of aeroelastic stability loss,
they avoid any possibility to investigate the post-
critical behaviour which is of strongly non-linear
character. However, the detailed knowledge of
the post-critical state, is very important being
decisive from the viewpoint of a possible sec-
ondary restabilisation due to non-linear effects.
A number of partial phenomena resulting from
the existence of parametric noises and asym-



metry of the stiffness matrix (non-conservative
forces) and of the damping matrix (gyroscopic
forces) have been described successfully in a
purely theoretical way, Náprstek (2001).

Besides the pure theory, there has been col-
lected a large number of experimental works re-
lated to this topic, see e.g. Ricciardelli et al.
(2002). Any of these branches creates its own
experimental conditions according to their needs
with emphasis on their typical parameters. A
systematic research is needed to clarify the role
of main individual parameters in the instability
onset. It seems that in the given situation it is
realistic to start with the development of a uni-
form theory based simultaneously on experiments
which would cover all known cases of aeroelas-
tic instability and possible restabilisation due to
non-linear and non-symmetrical terms (vortex
shedding incl. noises, galloping, flutter). Some
of these phenomena may intermingle and gener-
ate further state not yet described theoretically.

2. MODEL OF THE STRUCTURE
AND BASIC PROPERTIES OF THE

SYSTEM

We refere to the vibration of a slender prismatic
bar in the combination of bending and torsion,
according to the Fig. 1, circumvent by the wind
along its longer side. The form is symmetrical
along two axes, its center of torsion is identical
with its centroid and the effects of aerodynamic
forces can be referred to the center of this section.
The coupling of aeroelastic modes is caused solely
by the flow around the structure which produce
the running lift L(t) and moment M(t).
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Figure 1. Schematic depiction of the model with
two degrees-of-freedom in the air stream.

The problem to determine the aeroelastic
forces (coefficients) has been dealt with in great
detail by some monographs (newly see e.g.
Strømmen (2006)), in which the relation between
the forces and the air flow velocity has been de-
scribed by linear formulae. The aerodynamic

coefficients are functions of reduced frequency
κ = d · ω/V to respect the fact emerging from
the physical nature, that they are not static val-
ues.

If the difference between the first bending and
torsional natural frequencies is small, than it is
possible to deduce from practical observations
and an energy content assessment that flutter-
type vibrations can be described usually by a sin-
gle natural mode in each component. In such a
case for the purpose of qualitative analysis the
real beam can be replaced by a two degrees of
freedom system the stiffness matrix of which is so
defined as to make its natural frequencies corre-
sponding with the respective natural frequencies
of the original beam.

For the movement of the system we adopt fol-
lowing general description by a couple of differ-
ential equations, see e.g. Náprstek et al. (2007):

ü− 2ωbuu̇+ ω2
uu =

Km(1− γuuu̇
2 − γuϕϕ̇

2)(buuu̇+ buϕϕ̇) +

+Km(1− βuuu
2 − βuϕϕ

2)(cuuu+ cuϕϕ)

(a)

ϕ̈− 2ωbϕϕ̇+ ω2
ϕϕ =

KJ(1− γϕuu̇
2 − γϕϕϕ̇

2)(−bϕuu̇+ bϕϕϕ̇) +

+KJ(1− βϕuu
2 − βϕϕϕ

2)(−cϕuu+ cϕϕϕ)

(b)

(1)
where the parameters are: ωu - eigenfrequency
of the vertical motion, ωϕ - rotational eigenfre-
quency, ωbu, ωbϕ - damping ratios. The coeffi-
cients βij and γij represent scaling factors of the
non-linear part and form square asymmetric ma-
trices. The parameters cij , bij form square asym-
metric matrices as well. The coefficients cij , bij
could be considered as generalizations of very
well-known aeroelastic derivatives and should be
identified experimentally. Coefficients KJ ,Km

depend on the cross-section geometry and the
characteristics of the wind:

Km =
1

2m
%V 2 · 2d ; KJ =

1
2J
%V 2 · 2d2 (2)

with parameters: V - wind velocity, d - charac-
teristic dimension of the beam cross section, % -
air density under typical condition.

Roughly speaking the model (1) is oriented
on the non-linearities which are described by
velocities and displacements. In this meaning
they can be compared to the equation of motion
of a single-degree-of freedom system with non-
linear stiffness part (Duffing), combined with the
equation where non-linear damping depends on
the square of motion velocity (Rayleigh) Con-



sequently, we name the system (1) Rayleigh-
Duffing. Introducing external excitation to the
right hand side of the Eq. (1a), the component
different from zero will be the displacement u(t)
while the rotation ϕ(t) may identically equal zero
under certain conditions. Similar result will be
attained introducing external excitation only to
the right hand side of the Eq. (1b).

Conclusions about the stability of a critical
point may be acquired by means of construc-
tion of a suitable auxiliary function, called Lya-
punov function Φ. Its total time derivative Ψ,
can be identified as the rate of change of Φ along
the trajectory of the system that passes through
the point of interest in the phase plane. There
are no general methods of construction of Lya-
punov function and often the judicious trial-and-
error approach may be necessary. However, the
use of some general properties of mechanical sys-
tems often gives good results. For instance, tools
based on energy balance and the first integrals
are usually very effective, see e.g. the monograph
Glendinning (1994). If a system has several first
integrals, the Lyapunov function can be written
in a form of a linear combination of first integrals
and possibly of their functions. The coefficients
of these linear combinations, which can be con-
sidered as Lagrange multipliers, must be so de-
termined as to get to the resulting function the
properties of positive definiteness.

3. INSPECTION OF STABILITY OF
RAYLEIGH-DUFFING EQUATION

Let us concentrate on the case when the motion
is allowed in rotation only. Though simplified,
this assumption allows us to analyze some im-
portant properties and to understand the role of
individual parameters in the system. Investiga-
tion of the stability of nonlinear system around
stationary points can be started by means of the
corresponding linear system. However, for exam-
ple, no conclusion can be drawn when the critical
point is a center of the corresponding linear sys-
tem. Also, for an asymptotically stable critical
point it may be important to investigate the do-
main of asymptotic stability.

The system can be written in the system of
first order equations:

ϕ̇ = ψ

ψ̇ = −
[
2ωbϕ −KJbϕϕ

(
1− γϕϕψ

2
)]
ψ−

−
[
ω2

ϕ −KJcϕϕ
(
1− βϕϕϕ

2
)]
ϕ

(3)

The position of the critical points can be ob-
tained solving the respective algebraic systems
which follows from Eq. (3) demanding, that the
first derivatives on the left-hand side of equations
vanish. Each of these systems admits three inde-
pendent solutions. The first one corresponds to
the case, when both the velocity and the rotation
vanish providing the trivial solution:

P1 : ϕ = 0 ; ψ = 0 (4)

The second and the third solution implies that
the velocity vanish as it follows from the first
equation, while the second equation leads to the
formula:

P2,3 : ϕ = 0 ;ψ = ±
√

(KJcϕϕ − ω2
ϕ)

(KJβϕϕcϕϕ)
= ±a (5)

The points P2 and P3 are symmetrical with
respect to the origin, so that it is sufficient to an-
alyze the stability of one of them only. In order
to analyze the equilibrium stability in the point
P2, the transformation of the coordinates is use-
ful. We use the transformation which shifts the
origin to the point a.

ϕ = a+ ξ ; ψ = 0 + ζ (6)

For the system of transformed Rayleigh-Duffing
type of differential equation (3) then holds:

ξ̇ = ζ

ζ̇ = −
[
2ωbϕ −KJbϕϕ(1− γϕϕζ

2)
]
ζ−

−
[
ω2

ϕ −KJcϕϕ(1− βϕϕ(u+ a)2)
]
(ξ + a)

(7)
The linear variational equation of the vector

field given by the right side of the Eqs (3) leads to
the characteristic equation. Characteristic poly-
nomial for the equilibrium point P1 is given by
following formula:

∆ = λ2 + λ(2ωbϕ − bϕϕKJ) + ω2
ϕ − cϕϕKJ (8)

In the point P2 the characteristic polynomial is
given by:

∆ = λ2 +λ(2ωbϕ− bϕϕKJ)− 2ω2
ϕ +2cϕϕKJ (9)

Eigenvalues in the equilibrium points can be now
easily calculated. They are necessary in the eval-
uation of the stability of the non-linear original
system except some (critical) cases. In P1 they



can be calculated from the Eq. (8) and are given
by the following formula:

λ1,2 = −1
2(2ωbϕ − bϕϕKJ)±

±1
2

√
(2ωbϕ − bϕϕKJ)2 − 4(ω2

ϕ − cϕϕKJ)
(10)

For the eigenvalues in the point P2 a similar for-
mula can be derived using Eq. (9).

The stability analysis comes out from the Ja-
cobi matrix. We plot some particular examples
to see, how the course of the Lyapunov function
derivative changes on the trajectory, representing
the solution of the system and therefore also to
acknowledge, whether the stationary points are
stable or not. Certainly, this phenomenon de-
pends on the selection of parameters. At the
Figs 2 and 3, the Lyapunov functions Φ and
their derivatives Ψ are represented by the contour
lines. The dashed lines stand for negative values,
on the bold lines the functions vanish and on the
continuous lines the function values are positive.

Having in hand the formulas for eigenvalues,
we observe that two parameters are important
in order to judge the stability of the stationary
points. In the case of Rayleigh-Duffing Eq. (3)
they are given by the formulas:

r1R = 2ωbϕ −KJbϕϕ , r2R = ω2
ϕ − cϕϕKJ (11)

The Fig. 2 demonstrates the example of Lya-
punov function and its time derivative for the sys-
tem described by the Eq. (3) in the vicinity of the
point P1. On the Fig. 3 the example of functions
in the vicinity of the point P2 is demonstrated.
The formulae for them are given as follows:

Φ = ϕ2 + ψϕ+ ψ2/2

Ψ = −(ϕ+ ψ)
(
3ϕ3 + ψ

(
6ψ2 + 1

))
− ϕ2

(12)

The function Φ is positive everywhere around the
origin, while the function Ψ is negative.

Let us investigate the stability and bifurcation
of a stationary points of the system (3) in the
case, where the eigenvalues of the relevant Jacobi
matrix makes a pure imaginary couple. This case
occurs, if the following conditions are fulfilled:

r1 = 0 ; r2 > 0 (13)

If the eigenvalues of the Jacobi matrix cross
transversally the imaginary axis, the change of
stability character occurs. This phenomenon is
demonstrated below on Figs 4 and 5. Moreover,
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Figure 2: An example of the Lyapunov func-
tion (left) and its derivative (right) for the sys-
tem (3) in the neighborhood of the point P1.
r1R > 0, r2R > 0 and r1R − 4 r2R > 0. The equi-
librium point is stable.
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Figure 3: An example of the Lyapunov function
(left) and its derivative (right) for the system (3)
in the neighborhood of the point P2. r1R > 0,
r2R < 0 and r1R − 8 r2R > 0. The equilibrium
point is stable.

we obtain the ”degenerated” case of Eq. (3) writ-
ten as follows:

ϕ̇ = ψ

ψ̇ = −bϕϕKJγϕϕψ
3−

− (ω2
ϕ −KJcϕϕ)ϕ− βϕϕKJcϕϕϕ

3

(14)

The graph on the left of the Fig 4 shows an
example of the solution of Eq. (14). By means
of transforming the system into normal form and
applying Lyapunov function and invariance prin-
ciple we observe, that the origin is asymptotically
stable and we treat the case of the pure imagi-
nary eigenvalues and spiral point. A special case
arises, when both r1 = 0 and r2 = 0, which is
shown on the left graph of the figure. The origin
is still asymptotically stable, but the approach
to the equilibrium is not exponential, because
of the hyperbolicity of the Eq. (14). The right
graph represents the case, when the second con-
dition (13) is violated. It is the case of pitchfork
bifuraction when r1 = 0 and r2 < 0. Eigenvalues
are real with identical absolute value. The origin



-0.2 0.2 0.4 0.6 0.8 1
j

-0.75

-0.5

-0.25

0.25

0.5

0.75

1
Ψ

-1 -0.5 0.5 1
j

-1

-0.5

0.5

1
Ψ

Figure 4: Phase diagrams for the equation of mo-
tion, given by the Eq. (14)
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Figure 5: The oscillation with occurrence of limit
cycle.

P1 is unstable and there are two other asymptot-
ically stable equilibrium points P2,P3.

On the Fig. 5 the supercritical limit cycle birth
is shown. Passing with eigenvalues through the
imaginary axis transversally, we get instable ori-
gin and a limit cycle. The left graph represents
the case, when the origin is asymptotically stable
respecting the conditions r1 > 0 and r2 > 0. The
right diagram demonstrates the behaviour in the
case of conditions r1 > 0 and r2 > 0.

4. NUMERICAL AND
EXPERIMENTAL SOLUTION

Experimental activities in aeroelasticity have
been focused for longer time on gaining of the
knowledge of so-called aeroelastic derivatives and
on the determining of the critical state. This
is nowadays the well known task, which how-
ever does not comply with the real flutter na-
ture, where the loss of stability is ”sudden” and
with large amplitude motion. From the point of
view of basic research as well as from the perspec-
tive of the structural serviceability and lifetime,
it is interesting therefore to get information pre-
dominantly regarding the system behaviour not
only before the crisis appears, but also during
the transition time as well as in the post-critical
state.
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Figure 6: Time history of the rotation ϕ (left)
and the displacement u (right) taken from the
numerical calculation of the system. The coef-
ficients βij , γij etc.
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Figure 7: Response and phase diagram from ex-
periments with increasing velocity. Due to the
influence of non-linear terms, the oscillation has
several bumps before the limit cycle oscillation
starts.

Several numerical solutions and experiments
have been done in order to investigate the sys-
tem behaviour for varying equation parameters
and initial conditions. The time history of the
response is very sensitive to even slight change
of them. An example of experimental results is
given on the Fig. 6. Around critical points, the
response amplitudes rise dramatically, stabilize
and rise again and energy transmission between
two modes is identified. It has been calculated
for certain set of parameters, including the wind
speed.

Using experimental rig described in Náprstek
et al. (2007) the forces and amplitudes on sev-
eral section models have been measured, not only
during the low amplitude vibration, but also dur-
ing and after the instability onset. One such
sample of time history of the limit cycle oscil-
lation birth is shown on the Fig. 7. The wind
speed has been increasing continuously during
the wind tunnel experiments. The pitch motion
of the deck was small until it reached the bifur-
cation point. Keeping the wind speed constant,



it reached the limit cycle apparently of Rayleigh-
Duffing type. Three shapes of the deck cross-
section were studied. The amplitudes of both
the heave and pitch motions were registered us-
ing accelerometers. Pressures from twelve sensors
located on a surface of the deck was recorded dur-
ing experiments. This strategy enabled to com-
pare not only the response of the deck but also
the pressures in the individual points on the sur-
face.

5. CONCLUSIONS

The non-linear mathematical model of the
bending-torsional flutter has been composed and
verified considerably. Duffing and Rayleigh non-
linear terms in multi-component form with cyclic
symmetry have been introduced into the differ-
ential system. They act as consistent expansion
of the linear approach. The process of the math-
ematical model composition followed rather intu-
itive steps and trials to present an inherent de-
scription of effects and processes known from ex-
perimental measurements and numerical 2D/3D
simulations.

The basic properties of the non-linear sys-
tem have been investigated when passing into
the non-stable domain. Possibilities of the post-
critical re-stabilisation on the level of stable limit
cycles (if any) are discussed. The widely known
effects typical for post-critical regimes of various
types can be described by means of the proposed
non-linear model. In particular pitchfork bifurca-
tion points have been detected with obvious con-
figuration of stable and unstable branches; con-
ditions of existence and relevant portraits of the
principal limit cycles have been carried out; en-
ergy transflux between individual degrees of free-
dom has been detected and quantified. The de-
velopment of these methods is in progress and
relevant results will be provided in the near fu-
ture.

After the loss of stability of trivial solution the
response in one degree-of freedom tends to sta-
bilize itself in the form of approximate harmonic
or polyharmonic solution. The growth of this
component after the stability loss of the trivial
solution is prevented by a significant energy bar-
rier. The system tends to the response interact-
ing with the other component. When this energy
barrier has been overcome, however, the system
loses stability and its response grows beyond all
limits. This typical case has a number of inter-
mediate steps and special states, the origin of

which depends on the appropriate combination
of parameters described in the text.
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