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ABSTRACT 
The dynamic behavior of a cylinder wake at low 
Reynolds numbers is studied theoretically and 
experimentally. Theoretically, symmetry-group 
equivariant bifurcation theory is employed. Starting with 
a 2D CFD simulation of the transverse flow past a fixed 
cylinder, the most important Karman wake flow modes 
are derived via POD decomposition. From the known 
spatial symmetries of the first two modes, symmetry-
equivariant bifurcation theory has been employed to 
derive the lowest order discrete dynamical system 
(amplitude equations) modeling the mode interactions in 
Poincare space. The CFD based POD modal data for the 
stationary cylinder is used to determine the coefficients 
of these amplitude equations. The paper presents an 
analysis of the wake dynamics based on the amplitude 
equations. It is found that the apparent complex wake 
dynamics can be predicted by the surprisingly simple 
Poincare map which yields the main bifurcations 
observed. Typical bifurcations including homoclinic and 
period-doubling, encountered in the classical Bogdanov-
Takens scenario, are predicted and shown to agree 
reasonably well with CFD results. 

Preliminary results of experimental tests on 
vortex-induced vibration control, motivated by the 
foregoing results, and testing new using plasma actuator 
technology, are also presented. 

1. INTRODUCTION 
Numerous vortex wake modes have been 

observed having different spatio-temporal symmetry and 
their transitions explain some of the observed wake 
phenomena. For example, as first observed by 
Williamson & Roshko (1988) and then confirmed by 
Brika & Laneville (1993,1995), the jump in the response 
amplitude which coincides with a half period (π ) phase 
shift between the cylinder motion and the fluid force, is 
due to the transition, near resonance, from the 2S mode 
of vortex shedding to the 2P mode. Ongoren & Rockwell 
(1988) have also described a competition between 
different vortex wake modes. Spatial symmetry was 

found to be a key feature in the wake flow. This 
observation prompted Mureithi et al. (2002, 2005) to 
delve deeper into the implications of the observed wake 
symmetry in helping understand the underlying wake 
dynamics. A pair of simple discrete amplitude equations 
governing the nonlinear interaction of the Karman and 
reflection-symmetry modes were derived using 
symmetry equivariant bifurcation theory.  A qualitative 
analysis of these equations showed that a number of 
standard bifurcations of the Karman  mode could be 
expected as the amplitude of the reflection-symmetric 
mode was varied. Possible changes in the wake 
symmetry induced by increased forcing such as period-
doubling or symmetry breaking in the cylinder wake in 
the case of streamwise harmonic forcing were predicted. 

In more recent work, Rodriguez & Mureithi 
(2006) have performed CFD computations of the wake 
flow behind a cylinder undergoing periodic excitation in 
the flow direction. The role of spatial-temporal symmetry 
in the wake flow was elucidated by a POD analysis of 
the wake flow velocity field.  

The POD modes derived in this work provide a 
new avenue for the analysis of the forced wake flow. In 
the present work, These modes are used to determine the 
unknown coupling coefficients in the discrete amplitude 
equations derived earlier. A more quantitative analysis of 
this low dimensional wake model therefore becomes 
possible. 

2. CYLINDER WAKE DYNAMICS 

2.1 Cylinder wake response to external forcing 
The problem under study is that of a circular 

cylinder subjected to transverse flow at Re=1000. The 
flow is assumed to be two-dimensional. This assumption 
is reasonable in the case of forced cylinder motion which 
increases the effective correlation of flow structures 
along the cylinder span thus reducing three-dimensional 
effects. It should also be noted that the wake flow 
dynamics of interest in the present work are primarily 
two-dimensional. The validity of this assumption is 



verified a posteriori. Numerical simulations were carried 
out using the CFD code Fluent. Details of the simulation 
parameters and verification of the numerical procedure 
may be found in Mureithi & Rodriguez (2005), 
Rodriguez & Mureithi (2006) and Rodriguez (2006). 
Simulations were all carried out during 10000 time steps. 
The last 5000 time steps were used to analyze the steady 
state flow downstream of the cylinder in the case of 
periodic responses. In the case of quasi-harmonic or 
chaotic responses, the last 5000 time steps were also 
used to analyze the flow with the same precision in 
frequency decomposition as in the case of the periodic 
responses.  

The effect of cylinder stream-wise forcing on 
the wake flow has been studied in terms of vortex wake 
modes as a function of the cylinder oscillation amplitude. 
The inline forcing frequency corresponded to the 
Karman shedding frequency. Five response ranges were 
exhibited as the perturbation parameter was increased. 
For small cylinder amplitudes, up to A/D=0.075 (D being 
the cylinder diameter), the wake has a quasi-periodic 
response which turns to a chaotic response on increasing 
the amplitude. For A/D=0.15, the wake stabilizes in a 
periodic vortex shedding having a S configuration in 
Williamson & Roshko’s (1988) terminology. At 
A/D=0.175, the wake destabilizes via symmetry breaking 
into a P+S configuration. This wake structure is shown in 
Fig.1(a) for A/D=0.25. For A/D=0.35, the wake 
stabilizes again in a S mode of vortex shedding but at 
shedding frequency half the Karman shedding frequency 
for the stationary cylinder, Fig.1(b).  

From a dynamics point of view then, varying 
the cylinder forcing amplitude parameter triggers a 
sequence of bifurcations culminating in period-doubling. 
One of the primary goals of the present work was 
therefore to see if a simple discrete dynamical model 
based on symmetry group theory could reproduce this 
sequence of bifurcations, and in the process shed light on 
the underlying mechanisms for the observed changes in 
the wake. 

2.2 POD wake modes 
POD analysis based on the Karhunen-Loève 

decomposition was performed to extract the principal 
modes in the stream-wise velocity profile  at 
locations 10D downstream of the cylinder. In the 
analysis, the flow field is projected onto an orthonormal 
set of functions Ψ

'( , )u y t

k(y), (topos), each having time 
evolution ak(t) (chronos). The velocity profile may 
therefore be expressed as 
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The chronos magnitude represents the relative energy 
carried by the corresponding topos.  

     Fig.2 shows the first two topos modes  of the x-
velocity u(y,t) on the 10D line downstream of the 
cylinder. The modal decomposition clearly brings out the 
symmetry in the flow.  This spatial-temporal symmetry 
may be conveniently described by normalizing the basic 
shedding wavelength to 2π .  Defining the wavelength 
of the flow, λ, as shown in equation (2), helps 
characterize the spatio-temporal symmetry of the modes. 
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Thus, respectively, the first three modes found in the 
fixed cylinder wake have , ( )2 ,Z κ π ( )2 ,D κ π  and 

( )2 ,2 / 3Z κ π symmetries. In this notation then, the 

Karman 2S mode symmetry is , meaning that 

the 2S mode is invariant by a composition of reflection 
(κ) and a translation downstream by half a period, see 
Fig.2(a). 

(2 ,Z κ π )

( )2 ,D κ π  symmetry means the second mode is 

both invariant under reflection and under translation 
parallel to the flow by half a period. The symmetries of 
the other modes can be similarly described.  
     The P+S mode at A/D=0.25, Fig.1(b) may now be 
conveniently described more accurately by the symmetry 
group ( )2 , 2Z I π . This symmetry is a sub-group of 

( )2 ,Z κ π . The flow has lost its reflection ( ) symmetry 

via (possibly) a pitchfork bifurcation leaving only a 
translation symmetry and double the shedding period. 

κ

3. MODE INTERACTION DYNAMICS 

3.1 Derivation of reduced-order model 
As is clear from the preceding sections, the periodically 
forced flow undergoes a series of well defined 
bifurcations.  
     The sequence of bifurcations in the wake dynamics 
can be conveniently represented in a reduced discrete 
Poincare space by plotting the discrete evolution of the 
real and imaginary parts of the initially (for stationary 
cylinder) ( )2 ,Z κ π -symmetric POD mode K amplitude. 

The resulting bifurcations sequence is shown in Figure 3.   
Starting from the stable periodic (limit cycle) state for 
A/D=0, Fig.3(a), a quasi-periodic state is found near 
A/D=0.05, Fig. 3(b); the limit cycle appears to have 
undergone a symmetry-breaking bifurcation as well. 
Increasing the forcing amplitude, an apparently ‘chaotic’ 
state is found for forcing near A/D=0.1, Fig. 3(c). A 
further increase in forcing amplitude near A/D=0.35 
results in a stable period-doubled state as seen in Fig.3(d). 
      In this section, an attempt is made to quantify (from a 
model dynamics point of view) the bifurcation sequence 
observed above. The bifurcation behavior is again 
studied in the reduced Poincaré space. To arrive at a 
tractable model discrete dynamical system we suppose 



that the two lowest spatio-temporal modes dominate the 
dynamics. The two modes we consider are those for the 
unforced cylinder; the first two  topos  modes K and  
mode S shown in Fig.2. The spatial symmetries of these 
modes are, respectively, , and 

. Since POD gives normalized topos, the 

amplitude evolution of the modes is contained in the 
chronos. Starting with the symmetries Γ

(2 ,K Z κ πΓ = )
)(2 ,S D κ πΓ =

K and ΓS, 
Mureithi et al. (2002) have employed equivariant 
bifurcation theory to derive the general form of the 
amplitude equations governing the interactions between 
modes K and S. 

Representing the complex (chronos) mode 
amplitude by K and S, respectively, the discrete form of 
the mode amplitude interaction equations to third order is 
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Equation (3) gives the general form of the amplitude 
equa t ions  g iven  the  symmet r i e s  Γ K  and  Γ S . 
To determine the (generally complex) constants αk, βk, γkl 
etc., the Poincaré reduction of the computed spatio-
temporal mode data for A/D=0, Fig.3(a), are used. The 
data are first “complexified” via a Hilbert transform. The 
average wake period is used for discretization. K and S 
amplitudes are calculated for 45 wake shedding periods, 
thus the amplitude equations coefficients can be 
determined using a least square method to solve the over-
determined system of equations. Constraints that restrain 
the amplitude equations, from a stability point of view 
were verified during the least-squares calculations. These 
c o n s t r a i n t s  a r e  g i v e n  b e l o w .  
 

( )0Re α > 0; ( )2Re α < 0; ( )2Re β < 0;       (4) ( )0Re β > 0;

 
The constraints  assure  the stability of the modes in the 
case of  no  forcing. The map resulting when mode S  is 
considered  “constant”   has ( )2 ,Z κ π symmetry. The 

map and its complex conjugate are: 
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where,      2 2
0 11 011 ;     S Sμ α γ δ δ= + + = . 

 

3.2 Prediction of wake dynamics by reduced-
order model 
We consider now the dynamics of the K mode as the 
amplitude of the S mode is varied in the Poincare map 
(5). For the very low forcing (S) amplitudes, the limit 
cycle of Fig.3(a) is reproduced as expected as shown 
Fig.4(a). The limit cycle amplitude remains stable (albeit 

changing shape) as S increases. Near S=0.32, a pitchfork 
bifurcation of the flow field occurs. The unstable fixed 
point (source) at the origin transforms into a saddle, 
while two symmetrically located unstable fixed points 
are created, Fig.4(b). As S is further increased, a 
subcritical Hopf bifurcation near S=0.33 leads to the 
creation of two unstable limit cycles. The unstable limit 
cycles disappear in a Homoclinic bifurcation. At the 
same time, a new large unstable limit cycle is created just 
inside the outer limit cycle, seen in Fig.4(c) for S=0.3325. 
When S is increased further the outer two limit cycles 
collide and disappear in a saddle node (fold) bifurcation, 
see Fig.4(d) for S=0.3375. 
     The bifurcation sequence described above is the 
classical Takens-Bogdanov bifurcation scenario. The 
hallmark of the Takens-Bogdanov bifurcation is the 
presence of double-zero eigenvalues for the reduced 
linearized system. We now compare the predicted 
bifurcation sequence with bifurcations observed in the 
numerical simulations. Two important remarks should be 
made, however. First, the reader is reminded that the S 
mode is treated as a parameter and is thus not affected by 
mode K in the simple reduced model. Second, the 
dynamical system of equation (5) 
has ( )2 ,Z κ π symmetry. This symmetry must be 

considered for correct interpretation of the Takens-
Bogdanov bifurcation sequence discussed above.  
     Qualitatively, the mapping (5) reproduces the 
observed bifurcations reasonably well. In the numerical 
computation, we start off in the cylinder fixed case with 
a closed curve on the Kr,Ki plane, Fig.3(a). This initial 
limit cycle results from the Hopf bifurcation responsible 
for the onset of vortex Karman shedding. For a forcing 
amplitude of A/D=0.05 the limit cycle has undergone a 
symmetry-breaking bifurcation. For the mapping (5), this 
was found to be a pitchfork bifurcation, Fig.4(b). A 
homoclinic bifurcation is predicted to occur next by the 
mapping (5). In the CFD based map, complex, possibly 
chaotic, behaviour is found for A/D=0.075 – 0.1. 
Homoclinic bifurcations are known to be an important 
precursor to chaos. We hypothesize that this is actually 
what happens in the higher dimensional fluid systems 
resulting in the Poincare map of Fig.3(c). The final state 
is a highly organized period-2 state as shown in Fig.3(d). 
The mapping (5) on the other hand predicts a pair of 
fixed point states appearing via a pitchfork bifurcation. 
As shown in the Appendix, the mapping (5) is the square 
of a second, lower order, mapping which is obtained 
when the presence of ( )2 ,K Z κ πΓ = symmetry is 

considered. A period-doubling bifurcation of this, more 
fundamental, lower order map translates into a pitchfork 
bifurcation in the squared mapping. In other words then, 
the mapping (5) does, in fact, predict the final period-
doubling instability found in the cylinder wake for high 
amplitude forcing. 



4. EXPERIMENTAL TESTS 
The period-doubling bifurcation of the Karman mode, 
triggered by symmetrical forcing suggests an interesting 
idea for vibration control during Karman excitation. 
     Some preliminary experiments have been carried out 
to investigate the possibility of vibration control via 
induced flow bifurcation. The vortex shedding control 
experiments been carried out on a flexibly mounted 
cylinder having a 6.5 Hz natural frequency.  

4.1 Test Cylinder and Plasma Actuators 
The period-doubling bifurcation of the Karman mode 

is induced by the 2 -symmetric mode. To achieve 
this mode experimentally, plasma actuators were used. 
The actuators consist of a pair of electrodes separated by 
a non-conducting dielectric material running the length 
of the cylinder. The principle behind the actuator is fairly 
simple. As depicted in Fig.5, application of a radio-
frequency high a.c. voltage across the electrodes ionizes 
the air in the region of the highest electric potential. Due 
to the existing electric field gradient, the charged ions are 
attracted towards the electrode of opposite charge 
creating a body force on the surrounding flow. In the 
tests reported here, a pair of actuators were installed on 
the test cylinder close to the upper and lower flow 
separation lines shown in Figure 6. The actuators create a 
jet having a maximum velocity of approximately 3 m/s 
depending on actuation voltage and frequency. In the 
tests, much lower jet velocities were needed.  

( , )D κ π

 

4.2 Test Results 
Tests were performed using a flexibly mounted 

cylinder having a natural frequency approximately 7 Hz. 
For the D=40.4mm diameter cylinder vortex-shedding 
resonance occurs at approximately U=1.5 m/s. 
Symmetric actuator pulsations with a pulse jet velocity 
ranging from 0.03 – 0.25 m/s, in the cylinder wake, were 
applied on the cylinder upper and lower surfaces near the 
flow separation lines. Due to cylinder curvature, the jet 
flow, in the near wake, is oriented towards the cylinder 
centerline as opposed to being parallel to the upstream 
flow. 

Figure 7 shows examples of the wake velocity field 
for 0.03 m/s pulsations; the region immediately behind 
the cylinder and up to approximately 3D downstream is 
shown. Complex vortex-shedding is apparent. The pair 
of symmetrical vortices in Fig.7(a) later merge 
asymmetrically leading to an approximate P+S wake 
pattern. Frequency spectra for the inflow (u-) and 
transverse (v-) local flow velocities, at a location 1.4D 
downstream of the cylinder, are shown in Fig. 8(a)  for 
0.03 m/s jet velocity. The inflow velocity (u) component 
has a peak frequency component at 6 Hz corresponding 
to the jet pulsation frequency; pulsation was introduced 
near the vortex shedding frequency. The transverse 
velocity (v) component shows a dominant peak 
frequency at 3 Hz, which is half the forcing frequency. 
The Karman mode has therefore undergone a period-
doubling bifurcation induced by the reflection symmetric 
jet forcing. The 3 Hz frequency component is even 

stronger further downstream, at 2.4D downstream, as the 
instability develops spatially downstream as seen in Fig. 
8(b). 

This wake flow bifurcation has a strong effect on the 
vortex shedding-induced resonance.  For 0.03 m/s jet 
velocity, the tube vibration amplitude is significantly 
reduced. When the jet velocity is increased to 0.25 m/s, 
the resonance is eliminated. Note that only a small 
amount of energy is expended to achieve control. This is 
due to the fact that energy is only used to trigger a 
bifurcation which leads to frequency detuning between 
fluid and structure. Vortex formation is still present but 
the wake frequency is no longer close to the structural 
frequency. 

5. CONCLUSION 
Symmetry-group equivariant bifurcation theory has been 
employed to derive employed to derive the lowest order 
discrete dynamical system modeling cylinder wake mode 
interactions in Poincare space.  This surprisingly simple 
discrete map yields the main bifurcations observed in 
CFD simulations including homoclinic and period-
doubling bifurcations. Preliminary results of 
experimental tests on Karman wake control using plasma 
actuators are also presented. Bifurcation control is shown 
to be potentially useful as a control strategy for vortex-
induced vibrations. 
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7. APPENDIX 
The solution of the equation  

( )1 , ;n nK K μ+ = Φ  ( )Sμ μ=   (6) 

yields the (flow) mapping 
 

0
: ;n

n C CΨ → ( ) ( )
0 0 ,n n nK t K t K→ ∈C       (7) 

Using the normalized shedding period 2π, we define the 
Poincaré map from the flow  

0
,n

nΨ
2k

pc
πΨ = Ψ      (8) 

Having arbitrarily set n0=0. The mapping 0
n
nΨ is 

invariant under the  symmetry operation ( )2 ,K Z κ πΓ = . 

This means that 
[ ]pc pc pc

πκΨ = Γ Ψ = Ψ                           (9) 

Equation (9) has the consequence that the Poincaré 
mapping

pcΨ  is the square of the lower order mapping  

pc pc pc
πκΨ = Ψ = Ψ ,                          (9) 



thus 
                  ( )2

pc pcΨ = Ψ                                          (10) 

The Poincaré maps presented in Figs.3 and 4 correspond 
to the mapping 

pcΨ based on period 2kπ. Note also that 

the flow symmetry is restricted to ( )2 ,K Z κ πΓ = since the 

excitation mode S is reduced to a single amplitude 
parameter. Any 2kπ-periodic orbit will correspond to a 
fixed point of 

pcΨ . A symmetry-breaking bifurcation 

also yields a fixed point. However, the latter corresponds 
to a period-doubling for the lower order mapping 

pcΨ . 
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Figure 1. Vorticity field of the flow past the cylinder 
under forced oscillation for Vr=5 and (a)A/D=0.25, 
and (b) A/D=0.35.   
 
 

 

 
Figure 2 The first and second mode topos 10D 
downstream of the fixed cylinder. 
 
 
 

 

(a) (b) 

(c) (d) 

Figure 3 Poincare map relating the real and 
imaginary parts of successive mode K amplitudes 
for (a) A/D=0, (b) A/D=0.05, (c) A/D=0.10 and (d) 
A/D=0.3. 
 



 
Figure 4 Poincare map relating the real and 
imaginary parts of successive mode K amplitudes 
for S-forcing amplitudes (a) S=0.025, (b) 
S=0.32325, (c) S=0.3325 and (d) S=0.3375. 

 

 
 
 
 
 
 
 
 
 
 Figure 5 Basic concept of the single barrier 
dielectric discharge (SBD) plasma actuator. 
 

 

 

 
Figure 6 Test cylinder in wind tunnel. Plasma 
actuators are mounted near the upper and lower 
separation lines. 
 

 

 

 (a) (b) 
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Figure 7 Examples of  complex wake flow 
immediately downstream of cylinder, (a) vortex pair 
shedding, (b) alternate shedding with merging; 
plasma jet velocity 0.03 m/s. 
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Figure 8  In flow and transverse velocity spectra at 
a location 0.75D off-center transversely and (a) 
1.4D, (b) 2.4D downstream. 
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