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ABSTRACT 
In recent experiments during which a globe valve 

and a single hole orifice were tested in cavitation 
regime, a correlation between the acoustic damping 
coefficient and the speed of sound was observed. The 
results are proposed as a contribution to two-phase 
flow vibrations, and theoretical data are provided to 
support the correlation observed. Further work is 
needed to determine whether this correlation is 
dependent on the pressure drop device tested or the 
test rig or not. 

1. INTRODUCTION 
Two-phase flow damping is a concern in many 

fields of flow-induced vibrations, as for instance 
predicting conditions of fluid-elastic instability of tube 
bundles in Steam Generators (see the reviews in 
Weaver et al. 2000; Gravelle et al., 2006; Anscutter et 
al., 2006). Yet the damping is usually taken into 
account by using an average coefficient associated 
with the broadness of resonance peaks, and not by 
using well defined properties of the fluid. This is 
especially the case in pipe vibrations, where two-phase 
flows are known to increase the global damping 
coefficient of the coupled fluid/structure system and to 
reduce the speed of sound (Hassis, 1999). 

Several studies have recently been made to evaluate 
the pressure fluctuations generated downstream of 
pressure drop device in cavitation conditions (Testud 
et al. 2005; Caillaud et al, 2006; Testud et al. 2007). A 
striking feature of two-phase flows during the 
experiments was that the speed of sound was prone to 
spontaneously evolve, without any apparent variation 
of the experimental conditions. The reason of this 
spontaneous evolution could not be determined at the 
time of the tests. By force, the pressure spectra 
obtained were labeled by the speed of sound, and, 
comparing data obtained with the same speed of 
sound, a fair collapse of the pressure Power Spectrum 
Densities (PSD) was obtained (Testud et al. 2005). 
Furthermore, it was observed that the PSD exhibited 
significantly lower values in the frequency range 100-
1000 Hz when the speed of sound was low, as if self-
quenching effects were at stake. 

One comes to the conclusion that some relation 

exists between the speed of sound and an acoustic 
attenuation effect in the presence of two-phase flow. 
The purpose of the present paper is to support this 
proposition with experimental data.  

 

2. EXPERIMENTAL PROCEDURE 

2.1 Test rig description 

The test section, shown in Fig. 1, consists out of an 
open loop with a hydraulically smooth steel pipe of 
inner diameter D = 74 mm and wall thickness 
tp = 8 mm. The water is injected from a tank located 
17 m upstream from the orifice. The nitrogen pressure 
in the tank above the water is controlled by a feedback 
system to maintain a constant pressure. The water is 
released at atmospheric pressure 20 m downstream of 
the orifice. The temperature is kept equal to 310 ± 1 K 
during all experiments.  

The test rig is equipped with several series of three 
pressure sensors equally spaced, so that identification 
of propagating pressure waves can easily be achieved.  

A first series of experiments was performed with a 
thin single hole orifice with a hole diameter equal to 
22 mm. A second series of experiments was performed 
with a globe-style valve. All the experiments were 
made with upstream pressures varying from 10 bars to 
50 bars and downstream pressures of the order of 3 
bars, so that cavitation always occurred (see details of 
the experiments in Caillaud et al, 2006 and Testud et 
al., 2007).  
 

2.2 Acoustic pressure waves identification  

Due to the relatively low value of the speed of 
sound in gas systems, the identification of forward and 
backward propagating waves from pressure sensors 
demands the steady fluid velocity be taken into 
account (see for example Holland, 2000). In water 
pipes, the flow velocity seldom exceeds 10 m/s 
whereas the speed of sound is of the order of 1400 m/s, 
so that simpler expressions of the propagating waves 
can be used.  

 



 
Figure 1: experimental facility used during the first 
series of tests 

Let three pressure sensors be considered, indexed by 
1, 2 and 3, and such that the distance between the 
sensors 1 and 2 and the distance between the sensors 2 
and 3 are identical. Denoting L this distance and c the 
speed of sound in the pipe, the forward propagating 
spectrum p+ exhibits a time delay τ equal to L/c from 
one sensor to the next, i.e., in the time domain: 

p+(x1, t - τ)  =  p+(x2, t) =  p+(x3, t + τ)  (1) 

Similar expressions hold for the backward 
propagating pressure p-: 

p-(x1, t + τ) = p-(x2, t) = p-(x3, t - τ)  (2) 

Let the steady pressure fluctuations be described by 
their PSD, and let a sensor denoted “ref” be used as a 
phase reference.  

The relations (1) become 

e-jωτ C[p+(x1), pref, ω]  =  C[p+(x2), pref, ω]   
C[p+(x2), pref, ω]  = ejωτ C[p+(x3), pref, ω]  

where C(pi, pj, ω) is the cross spectrum of the 
pressures pi and pj at the circular frequency ω (in 
Pa²/Hz). In a similar way, the relations (2) become  

ejωτ C[p-(x1), pref, ω]  =  C[p-(x2), pref, ω]   
C[p-(x2), pref, ω]  = e-jωτ C[p-(x3), pref, ω]  

Identification of the forward and backward traveling 
pressure waves is achieved by combining the above 
equations and noting that the acoustic pressure is the 
summation of the forward and backward propagating 
waves. Considering for instance the sensors 1 and 2, 
one has: 

C[p+(x2), pref, ω] + C[p-(x2), pref, ω] = C[p2, pref, ω]   

ejωτC[p+(x2), pref, ω]+e-jωτC[p-(x2), pref, ω] = C[p1, pref, ω] 

Inverting the above equation system, the 
propagating waves can be expressed as: 
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The time of flight τ can be determined by 
expressing the cross spectra at points 1 and 3: 

ejωτC[p+(x2), pref, ω]+e-jωτC[p-(x2), pref, ω] = C[p1, pref, ω] 

e-jωτC[p+(x2), pref, ω]+ejωτC[p-(x2), pref, ω] = C[p3, pref, ω] 

and summing up the expressions so that a cosine is 
obtained: 

],,[2
],,[],,[

cos
2

31

ω
ω+ω

=ωτ
ref

refref

ppC
ppCppC  (3) 

The relation (3) can be used to check that the 
pressure measurements do not incorporate local 
turbulence, and to evaluate the quality of the acoustic 
propagation. It is also used to evaluate the value of the 
speed of sound. Examples are given in Fig. 2 for the 
single orifice case, where the sensors distance was 
equal to 40 mm; the speed of sound evolved 
spontaneously from 1420 m/s to 650 m/s during the 
test with a flow velocity equal to 26 m/s in the hole. 

 

3. ACOUSTIC PROPERTIES OF TWO-
PHASE FLOW 

In the present section, some theoretical properties of 
two-phase flows relative to acoustic propagation are 
summarized. 
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Figure 2: example of cosine combination for 
determining the speed of sound 

 

3.1  Speed of sound and void fraction 

In single-phase flow, the speed of sound c in a 
water-filled pipe can be theoretically determined with 
the help of the formula of Young (Lighthill, 1978) for 
the compliance of the pipe: 

 Et
)D (

cρcρ pwww

2

22

111 ζ−
+=  (1) 

where ζ is the Poisson ratio, ρw the volume density of 
water, tp the thickness of the pipe wall, E the Young 
modulus of the pipe, cw the speed of sound in pure 
water. Taking ζ = 0.3 for steel, cw = 1523 m/s at 
T = 310 K, E = 2 1011

 Pa, tp = 8 mm and 
ρw = 103 kg/m3, a value of c = 1454 m/s is obtained, in 
close agreement with the measurements of the speed of 
sound obtained upstream of the orifice. 

The density of a mixture of gas and water is: 

ρ2ϕ = βρg  +  (1 − β)ρw 
where ρ2ϕ is the volume density of the mixture, ρg is 
the volume density of gas and β the void fraction.  

Assuming an homogeneous behavior of each phase 
and a ‘frozen’ constant mass ratio between phases, the 
compliances combine according to: 
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where cg is the speed of sound in the gas and ρg is the 
density of the gas. The speed of sound in the gas is 
taken equal to 340 m/s. 

The estimation of the gas density can be achieved 
by assuming the gas to be ideal and the compression to 
be an adiabatic transform. Denoting P the static 
pressure and γ the Poisson constant of the gas, taken 
here equal to 1.4, one gets: 

g
g

Pc
ρ
γ

=2  

The resolution of the three former equations is 
straightforward, and the two phase speed of sound can 
be determined as a function of the void fraction β (see 
Fig. 3). 
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Figure 3: two-phase speed of sound vs. void fraction 

As can be seen, a very small void fraction is enough 
to significantly decrease the speed of sound. As the 
initial void fraction was not measured during the 
experiments, one comes to the conclusion that this 
void fraction spontaneously evolved, and that it is the 
cause of the evolution of the speed of sound during the 
single orifice tests. 

 

3.2 The Wijngaarden model of attenuation 

The issue is now to determine how the acoustic 
plane waves can be attenuated when traveling through 
a two-phase flow. This can be achieved by energy 
balance during one cycle of compression/expansion of 
the fluid, assuming that dissipation occurs within the 
gas bubbles.  

The elastic energy Ububble of a single bubble with a 
volume V submitted to a fluctuating pressure with a 
PSD equal to Cpp(ω) can be written in the linear 
approximation as: 

Ububble = V Cpp(ω) / ρgcg² 
The bubble does not expand instantaneously when 

the pressure increases, and this delay generates energy 
dissipation during one cycle. Using the Chapman and 
Plesset data provided by Van Wijngaarden (1972), the 
energy loss can be described by a logarithmic 
decrement coefficient Λ, with a value close to 0.4 for 
bubbles with a radius varying from 1 µm to 1 mm. 
More specifically, during one cycle of compression/ 
expansion, the energy decrease rate is equal to Λ/T 
times the bubble energy. This expression can be 
extended to all frequencies according to: 



Pbubble = 2π ω Λ V Cp(ω) / ρgcg²  
Pbubble being the dissipated power spectrum density for 
one bubble (in W/Hz). Summing up the contributions 
of all bubbles in one volume unit, one gets the volumic 
dissipated power as a function of the void fraction β: 

Pvol = 2π ω Λ β Cp(ω) / ρgcg²  
The issue is now to apply this law to the 

propagation of acoustic pressure waves. Considering a 
forward propagating wave p+, and assuming the steady 
flow velocity be negligible compared to the speed of 
sound, the acoustic energy flow can be written p+²/ρc 
in the time domain (see for instance Morse and Ingard, 
1968). Using the PSD formalism, and demanding the 
acoustic energy loss per unit length along the pipe axis 
be equal to the dissipation, one gets: 
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Hence, the attenuation of a propagating acoustic 
wave appears to be proportional to the frequency. 
Introducing a dimensionless damping coefficient α by: 
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the propagation of a pressure wave is described by 
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Hence, one needs two series of three sensors at two different 
locations to evaluate the attenuation coefficient α. 
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Figure 4: example of identification of forward and 
backward propagating pressure waves  
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Figure 5: example of evaluation of the attenuation as a 
function of the frequency  

4. RESULTS 
Estimation of the acoustic attenuation within the 

pipe is obtained by determining the PSD of forward 
propagating pressure waves according to the formulas 
of section 2.2 at different locations (see an illustration 
in Fig. 4). The attenuation coefficient α is then 
estimated by plotting the ratio of the forward 
propagating pressure waves at the two locations, and 
estimating the slope of the ratio, as shown in Fig. 5. 

Most of the tests performed with the single hole 
orifice could not be used for evaluating the acoustic 
attenuation, because the first and second series of 
pressure sensors were too close, so that the accuracy 
was poor. Furthermore, the speed of sound appeared to 
be significantly different between the first and the 
second series, which suggests that the pressure sensors 
were in the downstream area where two phase flows 
still evolved. Only a few measurements can be used, 
keeping in mind that the uncertainty associated with 
them is high. More precise measurements were 
obtained with the globe style valve.  

The results are given in Fig. 6 for the globe valve in 
three different operating conditions, depending on the 
pressures upstream and downstream, and for the single 
orifice when the measurements were accurate enough 
to estimate the acoustic damping. As can be seen, all 
data collapse on the same curve. 

Applying Equ. (4) does not bring a fair agreement 
with the data. A value of Λ of the order of 0.004 
instead of 0.4 should be used to fit approximately the 
data, and only for speed of sound higher than 600 m/s. 
This suggests that very small bubbles were involved in 
the experiments, and that their diameter evolved with 
the operating conditions. 
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Figure 6: attenuation coefficient as a function of the 
speed of sound  

5. PERSPECTIVES 
An acoustic attenuation vs. speed of sound curve 

was proposed in two phase flows. Whether the results 
obtained can be applied to any type of two phase flow 
in water cannot be told by now. The kind of pressure 
drop device used, the arrangement of the test rig or the 
pressure conditions may have generated one special 
type of micro-bubbles that leads to the data collapse of 
Fig. 6. As very few data seems to be at hand in this 
field, the present paper should be considered as a 
contribution to two-phase flow vibrations.  
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