
Flow Induced Vibration, Zolotarev & Horacek eds. Institute of Thermomechanics, Prague, 2008 

ARTIFICIAL NEURAL NETWORK FOR FLUTTER PREDICTION                        
OF SWEPT RECTANGULAR CANTILEVER WINGS  

Meysam Mohammadi-Amin 
Tarbiat Modares University, Tehran, Iran 

Arash Taheri 
Sharif University of Technology, Tehran, Iran 

Mani Razi 
Tarbiat Modares University, Tehran, Iran 

 
 

 

ABSTRACT 
An artificial neural network (ANN) was designed 

and implemented for prediction of flutter speed and 
frequency of swept rectangular cantilever wings. 
The ANN is a supervised multilayer perceptron that 
was trained based on an experimental data set 
involves flutter characteristics of various cantilever 
rectangular wing models. Some data were not 
learned to ANN and were maintained as test cases. 
The activation functions were tangent hyperbolic 
and linear function in the hidden and output layers 
respectively. For learning process, the normalized 
form of the inputs and outputs were given to the 
ANN. The ANN learned the relation between the 
inputs and outputs and was trained for predicting 
output parameters. It is observed that ANN results 
are in good agreement with experimental data as 
well as results of an aeroelasticity code developed 
using an analytical aerodynamic model. So this 
ANN can be used for quick prediction of flutter 
characteristics of swept rectangular wings and also 
for the study of the effects of various parameters on 
flutter characteristics of rectangular wings. 

1. INTRODUCTION 
Flutter is a dynamic aeroelastic instability that 

involves the interaction of the elastic, inertia and 
unsteady aerodynamic forces. In general, solving 
such aeroelastic problems computationally requires 
interaction between a structural analysis code and 
an aerodynamic analysis code where the 
information about geometry deformation and 
changing aerodynamic forces and moments is sent 
back and forth between the two modules. Just an 
analysis of wing deformation in static flight requires 
several runs with both structural and aerodynamic 
codes before reaching convergence to a solution, 
which is time consuming even on fast processors. 
On the other hand, artificial neural networks are 

computational entities that simulate the functioning 
of the brain and are, in principle, capable of 
modeling any nonlinear input-output relationship to 
any degree of accuracy. Artificial neural networks 
have proven to be able to learn and generalize 
correlations that would be difficult or almost 
impossible to explain analytically and where the 
problems are highly nonlinear in nature. Hence, 
ANN’s have been used in a variety of engineering 
applications, including aeroelastic problems.  

In aeroelasticity domain, heretofore, ANN's have 
been used for modeling nonlinear unsteady 
aerodynamic effects (Marques and Anderson, 
2001), predicting aeroelastic behavior of aircraft 
(Pesonen and Agarwal, 2002), modeling nonlinear 
aeroelasticity of morphing wings (Natarajan, 2002), 
predicting nonlinear oscillations in the aeroelastic 
response (Voitcu and Wong, 2003), analyzing the 
flutter behavior of a simple wing that under went 
multiple weight variation changes (Pitt and 
Haudrich, 2004), and for simulation of unstable 
aeroelastic responses (Wang, 2004). For example, 
in the work of Pesonen and Agarwal, a neural net 
was designed to predict the shape of a flexible wing 
in static flight conditions using results from a 
structural analysis and an aerodynamic analysis 
performed with traditional computational tools. 
Then, another network was also designed and 
trained to predict airfoil maximum lift at low 
Reynolds numbers where wind tunnel data was used 
for the training. Finally, neural net was designed 
and trained to predict the aeroelastic behavior of a 
wing without the need to iterate between the 
structural and aerodynamic solvers. 

In the present work, an efficient artificial neural 
network base on aeroelastic experimental data was 
developed and implemented for prediction of flutter 
characteristics of swept rectangular cantilever 
wings. In the following sections, details of ANN 
methodology, illustrative diagrams and explanatory 
discussion about results are presented.   



2. ARTIFICIAL NEURAL NETWORK 
METHODOLOGY 

In terms of new methodologies for multi-
dimensional estimation, neural networks are a 
promising technology because of their ability to be 
trained and used for investigation of systems that 
involve nonlinear dynamics. Because of this proven 
capacity, neural networks have been applied in 
system identification. In this research, a supervised 
multilayer 14-12-6 perceptron ANN with 12 
neurons in the hidden layer is designed and 
employed for predicting flutter speed and frequency 
of swept wings. An artificial neural network (ANN) 
is a massively parallel distributed processor made 
up of interconnected processing units. The 
fundamental information processing unit is called as 
neuron or node, which is the mathematical 
abstraction of the neuron in the biological science. 
Figure 1 presents the block diagram of the 
mathematical model of a neuron. As shown, the 
signal xi at the input of synapse j connected to 
neuron k is multiplied by the synaptic weight wkj. 
According to its activation function, the neuron fires 
when the weighted sum of the input signals exceeds 
the externally applied threshold input or bias, 
denoted by bk. In mathematical terms, the neuron 
model can be described as follows, 
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where xj is the input signal, wkj is the synaptic 
weight of the neuron, N is the total number of input 
signals of the neuron, bk is the bias, νk is the net 
input (activation potential) of the neuron, ϕk is the 
activation function of neuron k, and yk is the output 
signal of the neuron. 

The neurons are arranged in layers and are each 
connected to the neurons in the preceding layer for 
input and the following layer for output. Data are 
passed through weighted connections. The network 
acquires the knowledge from the presented data by 
adjusting the values of its synaptic weights during 
learning process. With suitable weights, the ANN 
can model any function. One popular and 
successfully applied ANN model is the multi-layer 
perceptron (MLP). The MLP has a multilayer feed-
forward configuration, and it is trained in a 
supervised (target-oriented) manner with the highly 
popular error back-propagation learning algorithm. 
Typically the MLP has input, hidden, and output 
layers. Figure 2 shows the configuration of the MLP 
with one hidden layer which is used in our model. 

Note that a synaptic weight is associated with each 
connection. Error back-propagation learning consist 
of two passes through the network on a layer-by-
layer basis: a forward pass and a backward pass. 

 

 
Figure 1: Neuron Model 

 
In the forward pass, the passive neurons of the 

input layer (input neurons) merely broadcast input 
data values (input patterns) over weighted 
connections to the neurons in the hidden layer 
(hidden neurons). Then each hidden neuron in the 
first hidden layer broadcasts the weighted sum of its 
inputs through its activation function to next hidden 
layer or the output layer. The neurons in the output 
layer (output neurons) pass the weighted sum of 
their inputs through their activation functions to 
generate the actual results of the network. Hidden 
neurons have no direct connection to input or 
output. The hidden layer is introduced to permit the 
MLP to model nonlinear functions of greater 
complexity. During the forward pass the synaptic 
weights of the network are all fixed. In 
mathematical terms, the net input to neuron k in 
layer m+1(L+1 is the output layer) is, 
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The output of neuron k will be, 
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In the backward pass, the actual output signals of 
the network are subtracted from the desired outputs 
(targets) to produce output error signals, and then 
those error signals are propagated backward 
(against the direction of synaptic connections) 
through the network. During the backward pass the 
synaptic weights are all adjusted in accordance with 
a predetermined mathematical criterion to reduce 
the output error of the network. The error signal at 
the output neuron j at iteration i (i.e., presentation of 
the ith training sample) is defined by, 
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where Tj(i) is the desired output for output neuron  j 
at iteration i. The usual criteria to guide the learning 
process is to minimize the cost function E, 

21 )]([
2
1 ieE L

j
Si Cj

+

∈ ∈
∑∑=                                       (6)                     

where the set C includes all the neurons in the 
output layer of the network, and the set S includes 
all the training samples (patterns) contained in the 
training dataset. Usually the Delta learning  rule is 
used as the error correction rule to update synaptic 
weights, as shown in figure 3 for synaptic weight 
wkj associated with the connection between neuron j 
in layer m and neuron k in layer m+1, the amount of 
weight adjustment is determined by,  
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where η is the learning rate, and 1+m
kδ is the local  

gradient at neuron k in layer m+1, 
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For output neurons (m = L), 
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For hidden neuron (m < L), 
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Then the synaptic weights will be updated, 
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Figure 2: Multi-layer perceptron with one      

hidden layer 

 
Figure 3: Delta Learning Rule 

 
As it is obvious in the formulation, the activation 

functions should be continuous. The shapes of 
activation functions, in hidden and output layers, 
are the ANN architecture design parameters for the 
designer. In our approach, the activation functions 
are tangent hyperbolic function and linear function 
in the hidden and output layers respectively. For 
learning process, the normalized form of the inputs 
and outputs are given to the ANN. The ANN learns 
the relation between the inputs and outputs and is 
trained for predicting output parameters. 

In this work, base on the physics of the problem 
and according to the experimental data set that was 
used (Barmby et al, 1950), we have chosen and 
examined some different combinations of inputs, 
outputs and number of neurons in hidden layer to 
obtain the most efficient configuration of the ANN. 
Then, the results were investigated base on the 
solution accuracy and required computational effort. 
The final perceptron (figure 2) which has the best 
accuracy and computational effort is in 14-12-6 
configuration with 12 neurons in the hidden layer 
and learning rate equals to 0.004. As shown in the 
figure 2 and listed in table 1, inputs include 
geometrical parameters (length, chord, sweep angle, 
C.G. location and elastic axis position), structural 
parameters (mass per length unit, bending and 
torsional stiffness, radius of gyration and natural 
frequencies) and wing/air mass ratio and outputs 
include Mach number of flutter, flutter speed and 
frequency and divergence speed. 

It must be mentioned that Barmby and his 
coworkers have investigated flutter phenomenon of 
swept wing models experimentally and analytically. 
The experimental work dealt with models as 
cantilevered at their roots with different geometry 
and mass properties and in order to facilitate 
analysis, they used models that were uniform and 
untapered (rectangular). Also, in their study, angle 
of sweep ranged from 0 to 60 degrees and Mach 
numbers extended to approximately 0.85. For 
demonstrating purposes, we train the ANN with 
both experimental and analytical output data 
reported by Barmby et al. The experimental data are 
denoted with subscript 'e' and analytical data are 
denoted with subscript 'R'. Also, Divergence speed 
(VD) is a theoretically calculated value.  

 µ  



Table 1: Inputs and outputs of the designed ANN 

3. RESULTS AND DISCUSSION 
To have optimum accuracy and computational 

cost, it is necessary to examine different learning 
rates in neural network training. Figure 4 shows the 
convergence history of the problem for different 
values of learning rates. The best results base on 
solution accuracy and computational effort are 
obtained for learning rate equals to 0.004. As it is 
clear, for greater learning rate values, we have less 
accuracy but more convergence rate. Figure 5 
shows the upper bound of the stable region for 
designed ANN. As is shown in the figure, by 
increasing the learning rate from 0.04 to 0.07, one 
can see more serious oscillations in convergence 
history and faster error increase. By increasing the 
learning rate to 0.08, the learning diagram diverges.  

The trained neural network was tested for inputs 
that it had not seen before. At first, the predictions 
of flutter characteristics base on analytical data are 
compared with the calculated counterparts reported 
by Barmby et al. As seen in the tables 2 and 3, 
agreement between calculated and predicted values 
is excellent and the ANN has successfully learned 
the mathematical logic governing the calculation of 
trained data. It means that for new cases, the ANN 
can quickly predict results of analytical method 
without need to solve the governing equations. 
Also, it indicates the ANN code works correctly.  

 

Figure 4: Learning history for different        
learning Rates 

 

 

Figure 5: Learning convergence history towards 
unstable region  

 

Table 2: Analytical flutter characteristics and   
ANN predictions 

Type Symbol Description 
Λ Angle of sweep 
m Mass of wing per unit length 
GJ Torsional stiffness 
EI Bending stiffness 
l Length of wing  
c Wing chord 

ah + xα Nondimensional c.g. position  
ah Nondim. elastic axis position 

r2
α 

Square of nondimensional radius of 
gyration of wing about elastic axis  

µ Wing/air mass ratio (m/πρb2) 
fh1 First bending natural frequency  
fh2 Second bending natural frequency 
ft First torsion natural frequency 

Input 

fα Uncoupled first torsion frequency 
M Mach number at flutter 
Ve Experimental flutter speed 
VR Theoretical  flutter speed 
fe Experimental flutter frequency 
fR Theoretical flutter frequency 

Output 

VD Theoretical divergence speed 

model VR  (m/s) VR_ANN  fR  (cps) fR_ANN  
24 101.0 101.7 44 43.08 

30B 95.66 98.26 44 43.53 
30C 97.90 98.31 46 46.07 
40A 117.5 120.8 41 40.52 
64 40.67 37.04 32 29.53 
73 95.21 98.12 46 44.61 
73' 162.261 164.84 39 39.53 

85-1 96.55 94.47 43 40.42 
91-1 103.2 106.8 15 17.40 



 

 

 

 

 

 
 
 

Table 3: Theoretical divergence velocities and  
ANN predictions 

 

The analytical method used by Barmby et al in 
aeroelastic calculations is simple and does not have 
enough accuracy in some cases. Therefore, for these 
cases, experimental data must be provided. Tables 
4, 5 and 6 give the values of experimental flutter 
characteristics and the predictions by ANN. For 
some cases, there are also the results of an 
aeroelastic code verified for flutter characteristics 
prediction of wing (described in appendix section). 
As seen, the results are in good agreement and a 
few appeared differences are due to the complex 
nonlinear nature of the experimental data.  

 

Table 4: Experimental flutter velocities and       
ANN predictions 

 

model fexp.  (cps) fANN  (cps) fcode (cps) 
30B …….. 50.36 50.39 
40A …….. 56.83 55.24 
64 …….. 13.31 14.48 
73 29 26.78 28.41 
73' 22 25.05 …….. 

85-1 35 35.37 36.22 
91-1 12.5 13.65 …….. 

Table 5: Experimental flutter frequencies and   
ANN predictions 

model Mexp MANN   
24 0.76 0.79 

30B 0.45 0.45 
30C 0.81 0.79 
40A 0.30 0.29 
64 0.24 0.26 
73 0.57 0.56 
73' 0.82 0.86 

85-1 0.41 0.42 
91-1 0.37 0.38 

Table 6: Experimental flutter Mach numbers and 
ANN predictions 

 

In table 5, flutter frequency of models 24 and 
30C are not presented because there are neither 
experimental nor aeroelastic code results for them. 
Nevertheless, the ANN could predict the values of 
flutter frequency of these models, 34.85 and 32.60 
respectively. Because of the lack of experimental 
data for the mentioned models and also inability of 
developed aeroelastic code to calculate flutter 
characteristics of them, the capability of the ANN in 
accurate experiment-based prediction of flutter 
characteristics of such models becomes more 
considerable and interesting. 

Another capability of the designed ANN is that 
we can use it for parametric analysis and study of 
the effects of various parameters on flutter 
characteristics. Figure 6 shows the effect of sweep 
angle variation on flutter speed value for model 73. 
As seen, the predicted trends of the code and the 
ANN are similar and the difference between the 
values of two methods decreases towards the 
middle. The major advantage of the ANN approach 
is that it does not require multiple runs to obtain 
such trend lines. In this way, considerable saving in 
computational time and cost will be earned.  

 

 
Figure 6: Effect of sweep angle on flutter speed     

of model 73 

model VD  (m/s) VD_ANN  (m/s) 
24 103.7 99.29 

30B 118.9 118.0 
30C 118.4 119.6 
40A 158.6 160.0 
64 36.34 36.03 
73 117.5 117.1 
73' 154.2 150.7 

85-1 87.61 88.13 
91-1 152.4 149.0 

model Vexp.  (m/s) VANN  (m/s) Vcode (m/s) 
24 125.6 121.0 …….. 

30B 120.2 118.1 117.8 
30C 126.9 134.6 …….. 
40A 105.0 96.23 100.6 
64 37.50 40.08 35.85 
73 86.27 86.56 88.95 
73' 125.1 123.3 …….. 

85-1 143.9 146.1 144.3 
91-1 56.77 57.11 …….. 
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Figure 7: Effect of wing/air mass ratio on flutter 

speed of model 73 
 
Figure 7 represents the effect of wing/air mass 

ratio on flutter speed for model 73 that its data was 
not included in the training data. As shown, 
agreement between the code results and the ANN 
predictions is excellent. We can obtain similar trend 
curves regards the effects of the other parameters on 
the flutter characteristics using the ANN.   

It is noteworthy that the ANN result accuracy 
depends on the ANN type, number of inputs and 
outputs, number of hidden layers, number of 
neurons in the hidden layers, and number of data 
which are used for ANN training. As said before, in 
this work, the optimal case with minimum error and 
computational effort was obtained using different 
ANN configurations.  

4. CONCLUSION 
In this paper, the utilization of artificial neural 

networks for wing aeroelastic studies was explored. 
In this respect, an efficient artificial neural network 
was developed and used for flutter prediction of 
swept wings successfully. The ANN is a supervised 
multilayer perceptron that was trained based on an 
experimental data set involves flutter characteristics 
of various rectangular wing models. It was seen that 
the ANN results are in good agreement with the 
experimental data. So, the resultant ANN can be 
used for quick prediction of flutter characteristics of 
swept rectangular wings with proper accuracy. 
Also, the designed ANN may be implemented for 
investigation of the effects of various parameters on 
the flutter characteristics of swept rectangular 
cantilever wings.  
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5. APPENDIX 
Here, details of the aeroelastic code mentioned in 

the results section are presented briefly. In order to 
develop a code effective for subsonic compressible 
flow, a previously derived analytical aerodynamic 
model for 2dof swept wings in incompressible flow 
and in the frequency domain was modified using 
Prandtl-Glaurt compressibility correction factor. 
Assuming the wing as a uniform cantilever beam, 
its first mode shapes were applied. The well known 
Lagrange equations along with assumed mode 
method were used for this rectangular swept wing 
oscillating in pitch and plunge degree of freedoms 
in order to derive the required aeroelastic governing 
equations. It should be noted that the generalized 
forces corresponding to plunge and pitch 
displacements were obtained using the virtual work 
law and strip theory for the modified aerodynamic 
models. Finally, P-k method is used as the method 
of solution for the derived governing equations.  
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