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ABSTRACT 
In this work, we study the effects of the free 

surface on the sphere immersed in a steady flow 
through the analysis of stream wise and transverse 
displacements. The range of relative submergence, 
h*, is between 0 and 0.75 and the tethered sphere is 
characterized by a low value of the mass ratio 
m*~1 and a low value of damping ratio (ζ=0.007). 
The movements of the sphere have been measured 
using two methods: (a) by means of an analogue 
laser displacement sensor, and (b) by image 
analysis of the sphere movement CCD acquisitions. 
The second method provided the 2D reconstruction 
of the trajectory. The experimental data have 
highlighted a significant influence of free surface 
flow both on the transverse oscillation amplitudes 
and on the oscillation frequencies of the sphere. 

1. INTRODUCTION 
The problem of vortex-induced vibration of 

structures is important in many fields of 
engineering. This has led to a large number of 
fundamental studies that are summarized in the 
comprehensive reviews of Sarpkaya (1979), Griffin 
and Ramberg (1982), Bearman (1984), Parkinson 
(1989) and Williamson and Govardhan (2004) and 
the books by Blevins (1990), Naudascher and 
Rockwell (1994), Sumer and Fredsoe (1997) and 
Anagnostopoulos (2002). Most of these studies 
have been on cylindrical structures, and prior to 
some preliminary work (Govardhan and 
Williamson, 1997, 2005; Jauvtis et al., 2001; 
Mirauda et al., 2004, 2007; Greco et al. 2005) there 
is almost no reported work on vortex-induced 
vibrations of a sphere despite its practical 
significance. Some practical examples include 
tethered bodies like marine buoys, underwater 
mines, tethered balloons in the atmosphere, and 
towed object behind ships. 

In the present work, we seek to understand the 
influence of free surface flow on the amplitude and 

frequency response of a tethered sphere free to 
move in both the stream wise and transverse 
directions to the fluid flow, for determined values of 
mass and damping ratios.  

The studies, developed in the last years on the 
flow-sphere interaction (Govardhan and 
Williamson, 1997, 2005; Jauvtis et al., 2001; 
Mirauda et al., 2004, 2007; Greco et al., 2005), 
highlight the existence of a significant dependence 
of the transverse and stream wise oscillation 
amplitudes, A*y and A*x, and of the transverse 
frequency ratio, f*, in function of normalized 
velocity, U*, changing mass, damping ratio and 
relative submergence (see Table 1).  

Jauvtis et al. (2001), analyzing the vibrations of 
tethered spheres free to move in both stream wise 
and transverse directions to flow for high values of 
relative submergence (h*>>1) and for a very wide 
range of normalized velocities (U* = 0 – 300), find 
three different modes of response (Figure 1 and 2). 
The first two modes observe in the case of a sphere 
immersed in a water flow for values of m* from 0.8 
to 28, while the third mode in the case of sphere in 
wind tunnels around to values U* of about 20 and 
for mass ratios of 80 and 940. The Mode I response, 
that represents the origin of the synchronization 
regime, is characteristic of a resonance condition at 
U* = 6, and corresponds to the static body vortex 
shedding frequency lying close to the natural 
frequency and to the oscillation frequency of the 
body (Figure 3). The Mode II observes for 
normalized velocities between 8 and 15, where the 
body oscillation frequency is close to the  static 
body vortex shedding frequency (Figure 3) and 
periodic vibrations occurs with large amplitudes 
close to one diameter. For the high-speed (U*>20) 
the Mode III observe where the body dynamics 
cannot be synchronised with the principal vortex 
shedding frequency. In fact the principal vortex 
shedding frequency is from 3 to 8 times the body 
oscillation frequency and so the classical lock-in or 
synchronization of frequencies cannot explain this 
vibration mode.  



Added mass                         361 DACam πρ⋅=  

Mass ratio                             63Dmm πρ=∗  

Damping ratio                   )(2 ammkc +=ς   

Relative submergence                         Dhh =∗   

Transverse amplitude ratio       DyA rmsy 2=∗  

Stream wise amplitude ratio     DxA rmsx 2=∗   

Normalized velocity                     DfUU N=∗  

Transverse frequency ratio              Nfff =∗  

Reynolds number                         µρUD=Re   

Froude number                            gDUFr =     
 
where CA = potential added mass coefficient (CA = 
0.5 for a sphere), m = sphere mass, c = structural 
damping, k = spring constant, h = distance from 
the free surface to the surface of the sphere, yrms = 
root mean square of transverse oscillation 
amplitudes, xrms = root mean square of stream wise 
oscillation amplitudes, fN = mechanical natural 
frequency in the medium, D = sphere diameter, ρ 
= fluid density, U = free-stream velocity, µ = fluid 
dynamic viscosity, f = oscillating frequency of the 
sphere, g = gravity acceleration, fvo = non-
oscillating body vortex shedding frequency. 

Table 1: Non dimensional groups used. 

 
Subsequently Govardhan and Williamson (2005) 

confirm the results of Jauvtis et al. (2001) relative to 
modes I and II and find the Mode III also for 
spheres in water channel. Such mode of response 
appears at high water flow velocities where the 
frequency of vibration is far below the frequency of 
vortex shedding for a static body. They note that the 
Mode II and Mode III regimes are always separated 
by a desynchronized region. Moreover, considering 
the stream wise response amplitudes of a sphere in 
function of U*, they observed a certain difference 
with transverse oscillations (Figure 4). In detail, the 
stream wise amplitude (A*x) are dependent from the 
mass ratio for sufficiently small mass, m*<6, while 
for larger sphere mass, m*>6, the stream wise can 
be considered negligible. Besides, for low mass 
ratio, it is possible to observe two type of oscillation 
trajectory: for m*<1 (the sphere is defined light) it 
is that an eight; while for m*>1 (the sphere is 
defined heavy) it is that of crescent topology 
(Figure 5).  

In a different way respect to Jauvtis et al. (2001) 
and Govardhan and Williamson (2005), Mirauda et 
al. (2004, 2007) and Greco et al. (2005), analyzing 
the vibrations of a tethered sphere free to move in 

both stream wise and transverse directions to flow 
for low values of relative submergence (h*<1), for 
values of m* close to unity and for the a little range 
of normalized velocities investigated (U* = 0 – 8), 
reveal the only presence of the Mode I (Figure 1), 
with a crescent behaviour similar to the data of the 
previous Authors.  

In the present work we reported the first results 
obtained analyzing the effects of the free surface on 
an tethered sphere in a steady flow through the 
measurement displacements. Follow a description 
of the experimental details and the discussion of the 
results. 
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Figure 1: Transverse amplitude ratio versus U*, for 

spheres with different m* and h* in water.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30 35 40
U*

A*y

Jauvtis et al. (2001) m*=80, h*>>1

Modo II

MODE I

MODE IIIMODE II Synchronization 
boundary

Figure 2: A*y versus U*, for an heavy sphere in air. 
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Figure 3: Transverse frequency ratio versus U*, for 
spheres with different m* and h*, in air and water. 

 



 
Figure 4: Transverse and stream wise amplitudes 
versus U*, for a tethered sphere with m*=0.45, at 

different Re and lengths of the rod, in water. 
 

 
Figure 5: Normalized stream wise amplitude 

(A*x/A*y) versus m*, for different tethered spheres. 

2. EXPERIMENTS 
The experiments have been performed in a non-

tilted Plexiglas open water channel with rectangular 
cross section, 0.6 m height, 0.5 m width and 5.0 m 
length. The obstacle used has been a water filled 
sphere with a diameter D=0.087 m. The sphere 
surface is made of PVC and covered with an 
episodic paint to reduce the surface roughness. A 
rod has been used to connect the sphere to a fixed 
structure. The rod is made of stainless steel and 
Derlin. The stainless steel part, which is connected 
to the sphere, is 0.080 m long and 3 mm in 
diameter. The Derlin part completes the rod with a 
diameter of 12 mm. The distance between sphere 
and channel floor has been set at 3 mm. Figure 6 
shows the sketch of the obstacle rest. 
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Figure 6: Sketch of the obstacle rest mounted on the 

channel (cross-section). 
 

The movements of the sphere have been 
measured using two methods: an analogue laser 
displacement sensor able to provide only the 
transverse displacements and an image analysis of 
CCD (Charge Coupled Device) acquisitions, able to 
provide the 2D (stream wise and transverse) 
displacements of the sphere. With the two 
techniques of displacement measure it has been 
possible to elaborate a spectral analysis of the 
signal, from which have been deduced the 
transverse oscillation frequencies useful for the 
analysis of the results.  
 

  
(a)      (b) 

Figure 7: Two different techniques of displacement 
measure: a) laser sensor; (b) view of marker by 

CCD camera. 
 

Table 2 summarized the experimental range 
considered in this work. The measurements have 
been taken for many different steady flows 
produced (0.2 < U < 0.8 m/s). All the generated 
steady flows ranging from 0.22 to 0.87 of Froude 
number; from 1.74·104 to 6.96·104 of Reynolds 
number and are run for relative submergence from 
h*=0 to h*=0.75.  
 



 
Table 2: The characterized size of the investigated 

steady flow. 

To compare the transverse displacements 
obtained with the two techniques, it is made 
necessary to report both the movements to an only 
system of reference that has its origin in the centre 
of the sphere. To bring the displacements by CCD 
camera to the new system of reference has been 
calculated in a first moment the inclination of the 
rod for every measure through a simple 
trigonometric relationship of the type: 
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in which α is  the inclination of the rod, yrms is the 
root mean square of signal by CCD camera, and 
Hrod is the height of rod (Figure 8). Subsequently, 
the root mean square of signal has been multiplied 
for the tangent of α. These movements of the CCD 
camera have been reported on a graph with those 
acquired by the sensor, and, by best-fit line, has 
been calculated the difference in percentage among 
the two movements. The real movements of the 
sphere centre have been obtained multiplying the 
value of the angular coefficient of best-fit line for 
displacements measured by the sensor. The 
comparison among this last ones and those 
measured by the CCD camera has given a error 
lower than 10% for almost all the displacements, 
underlining the precision of the two techniques of 
measures (Figure 8). Such precision has been 
confirmed, besides, from the analysis of the 
oscillation frequencies obtained by the power 
spectrum. As it possible to observe by an example 
reported in Figure 9, the frequencies of oscillation 
result equal for the two techniques.  
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Figure 8: Displacements of the sphere centre with 

the two techniques. 
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Figure 9: Power spectrum of signal  for U*=1.72, 
h*=0.16: (a) by laser sensor; (b) by CCD camera. 

3. RESULTS 
As mentioned above, the maximum amplitude of 

a structure depends from the normalized velocity, 
therefore plotting the transverse amplitude versus 
U* (Figure 10) it is possible to observe how our 
system reproduces in a very similar manner, for all 
the different values of h*, the curve of Jauvtis et al. 
(2001) also if it is translated to left and with 
amplitudes reduced. More in detail, the 
synchronization regime is reached for values of U* 
lower than those found from others Authors 



obtained for spheres fully submerged. This could be 
due at the formation of jet-like flow between upper 
surface of the sphere and the free surface, 
characterized by a very low-velocity region of 
quiescent fluid that slow down the vibrations of the 
body. Besides, it doesn’t observe the peak response 
amplitude that is characteristic of resonance 
condition because the presence of free surface near 
to the sphere conditions the dynamic of body 
reducing both the oscillation amplitudes and 
frequencies. The same result is evident by diagram 
of f* in function of U* (Figure 11), where the 
motion evolves close to the Mode I of response, 
reaching the synchronization regime but not the 
resonance condition (f*=1).  

As already described by Govardhan and 
Williamson (2005) for low mass ratios, it is possible 
to note also the presence of a region of non-periodic 
response within of the synchronization regime 
(Figure 1). According with those observed by the 
authors, Figure 12 reports the time-history of the 
transverse displacements of some data plotted in 
Figure 10. The points marked with 1, 3 and 5 show 
a periodic trend typical of the Mode I, while the 
points 2, 4 and 6 show a random component in the 
trend typical of the transition between two modes 
(Mode I and Mode II) as reported in Figure 1.  
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Figure 10: Transverse amplitude ratio versus U*, 

for spheres with low m*, in water. 
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Figure 11: Transverse frequency ratio versus U*, 

for spheres with low m*, in water. 
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Figure 12: Transverse movements of the sphere in 
the time. 

 
Finally, as discussed first, the stream wise 

oscillations of the sphere could not influence the 
dynamic response of the body, therefore, in Figure 
13 we report a direct comparison between 
transverse and stream wise amplitudes in function 
of U*. The data points confirm the tendency found 
by Govardhan and Williamson (2005), in fact the 
transverse oscillation amplitudes are always 
predominant respect to those in stream wise 
direction, which are close to zero value, and this is 
confirmed by the use of CCD camera that has 
allowed to measure the trajectory of the movements 
on the horizontal plane of the sphere. As it is 
possible note from the Figure 14 the trajectory of 
displacements is that typical of crescent topologies. 
These results seem to agree with data of Govardhan 
and Williamsom (2005) obtained for values of m*> 
1. 
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Figure 13: Transverse and stream wise oscillation 

amplitude versus U*, for sphere with m*=1.34. 
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Figure 14: Oscillation trajectories for h*=0.31: (a) 
U*=1.49; (b) U*=2.99. 

  

4. CONCLUSION 
An experimental apparatus has been designed to 

study the flow field and the movements of a 
tethered sphere characterized by low value of 
relative submergence and low value of the mass and 
damping ratios. 
The analysis of displacements leads to the following 
major results: 

1. the comparison of transverse amplitudes 
obtained both with laser sensor and with 
CCD camera has given a error lower than 
10%, underlining the precision of the two 
techniques of measure; 

2. the synchronization regime is reached for 
values of U* lower than those found from 
others Authors for spheres fully 
submerged, but it isn’t reached the 
resonance condition; 

3. it is possible to note the presence of a 
region of non-periodic response within of 
the synchronization regime; 

4. the trajectory of the movements on the 

horizontal plane of the sphere is that 
typical of crescent topologies for m*>1. 
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