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ABSTRACT

Investigation of steady flow through a nor-
mal triangular tube bundle is carried out nu-
merically using a 2D Reynolds Averaged Navier-
Stokes solver. A single tube of 38mm diameter
in the centre of a 1.32 pitch to diameter ratio
array is statically displaced and fluid force coeffi-
cients on the tube in the centre of the array are
obtained for a range of Reynolds number. Com-
parison of pressure coefficient with experimental
data indicates simulations provide a reliable in-
dication of Reynolds number dependance. These
fluid force coefficients are then used as input into
the quasi-unsteady model in order to predict the
critical velocity of damping controlled fluidelas-
tic instability for a single degree of freedom tube
within an array. The predicted critical velocities
are in the range of empirical data from the liter-
ature. It is shown that Reynolds Number has a
significant effect on critical velocity. Furthermore
the mass ratio can also impact on the critical ve-
locity at high mass-damping values.

1. INTRODUCTION

Flow-induced vibration (FIV) can be a major
problem in large heat exchangers leading to them
being shut down for repairs or even needing to
be replaced outright. This in turn leads to huge
losses in revenue as well as the possibility of
power outages.

One well recognised form of this vibration is
fluidelastic instability, FEI, which is the most
destructive and least well understood. Damp-
ing controlled FEI can occur even when a sin-
gle flexible tube, within an otherwise rigid array,
is subjected to cross flow. Through a feedback
mechanism of negative damping the tube may ex-
perience large amplitude self-excited oscillations.
The potentially catastrophic nature of this FIV
mechanism has lead to a substantial research ef-
fort including empirical studies and the develop-
ment of various models to predict the critical on-
set velocity.

Tanaka and Takahara (1981) proposed an em-
pirical model in which the fluidelastic force E is
represented by various fluid force terms linked
with nondimensional coefficients, the values for
these coefficients must then be obtained from full
dynamic experimental tests. This approach has
been used by other researchers (Chen et al, 1994;
Meskell and Fitzpatrick, 2003). However it gives
little understanding of the fundamentals behind
the fluidelastic force.

A theoretical model was proposed by Lever
and Weaver (1986) which used redistribution of
streamtube area to predict the onset of insta-
bility, this model required some empirical input,
with a crucial variable being the phase lag term.

The model developed by Price and Paidous-
sis (1984) used the quasi-steady assumption that
the dynamic fluid forces are related to the forces
for a statically displaced tube by a phase lag
term. This was later developed by Granger and
Paidoussis (1996) to represent the phase lag term
as a function rather than a constant, which is a
more realistic approach. Using this method sta-
bility maps were obtained for two array geome-
tries.

Validation of these models is still based pri-
marily on comparison of predicted stability maps
with experimental critical velocities. However,
the experimental data shows significant unex-
plained scatter for the values of critical velocity
and this is compounded by the lack of fundamen-
tal understanding of the fluid dynamics at play.

Previous models have assumed that the effect
of Reynolds number has no effect on levels of crit-
ical velocity. However, in a limited experimental
study Mewes and Stockmeier (1991) have shown
this not to be necessarily the case. Price (2001) in
his discussion of the applicability of the Connors’
equation noted that a complete model of fluide-
lastic instability should also include a Reynolds
number dependency.

In this study the issue of scatter among the
experimental data will be investigated as well as
the effect of mass ratio. Also the novel approach



of using CFD to obtain the force coefficients, pre-
viously obtained experimentally, will be used.

2. THEORY

The fluidelastic force E that a tube in an array is
subjected to can be expressed by the governing
equation of motion

msÿ + csẏ + ksy = E(y, ẏ, ÿ, U0) (1)

here the effects of both turbulent buffeting and
vortex shedding have been ignored. There are
several models for the this function. One such
model proposed by Price and Paidoussis (1984)
used the quasi steady approach, which assumes
the force at any moment in time on the oscillating
tube is equal to the force it would be subjected to
for that static displacement, along with a time lag
on this force to predict values of critical velocity
Uc.

This model was later improved upon by
Granger and Paidoussis (1996) to represent the
time lag as a delay function within which the
core problem is the memory function which
describes the relation between the instanta-
neous fluid forces and the static lift force. In
this quasi-unsteady model the unsteady Navier-
Stokes equations are considered to ultimately
give an expression for the instantaneous lift forces
the oscillating tube is subject to

Fy(t) = −1
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(2)

In which d is the tube diameter, L the tube
length, ρ the fluid density, U0 the freestream ve-
locity, and CM , CL and CD the mass, lift and
drag coefficients respectively. The instantaneous
tube displacement y is convolved with the delay
function h. The drag which would normally only
be considered for forces in the x direction is in-
cluded as due to the quasi-steady assumption it
will have an impact on the forces on the y di-
rection. However its influence is minimal when
compared to the influence of the lift. The convo-
lution integral is given as

h ∗ y =
∫ τ

0
h(τ − τ0)y(τ0)dτ0 (3)

with h representing the memory function

h(τ) =
dΦ
dτ

. (4)

The transient evolution of this memory func-
tion, which is the fundamental issue behind

damping controlled fluidelastic instability, is de-
termined by the function Φ which converges to-
wards 1 as τ approaches infinity. The chosen
representation for this was a series of decaying
exponentials, based on Schwartz’s theorem:

Φ =

(
1 =

N∑
i=1

αie
−δiτ

)
H(τ). (5)

Previously, Granger and Paidoussis (1996)
found the parameters αi and δi by carrying out
dynamical tests on a displaced tube in an array
subject to cross flow and measuring the vibratory
response and force coefficients and inputting the
data back into a modified equation.

More recently Meskell (2005) has proposed a
simple wake model to predict the values of αi and
δi and thus calibrate the model without need for
experimental data. This model is built around
the assumption that the memory function is the
normalized instantaneous bound circulation on
the tube. Modelling the wake as a discretizised
vortex sheet an equation for the memory function
is achieved. From this and by solving the equa-
tion of motion in the Laplace domain a quintic
polynomial in the critical velocity is obtained.

5∑
i=1

piU
i
c = 0 (6)

in which pi = pi(ζ0,mr, CD, ∂CL
∂y , α1, α2, δ1, δ2)

Using this model the only required input data
for the model to predict critical velocities are the
structural properties ζ0 the damping ratio, and
mr the mass ratio, along with the static fluid
force coefficients CD and ∂CL

∂y . Up until now
these force coefficients have been obtained ex-
perimentally procedure. This study will obtain
these fluid force coefficients through the used of
numerical simulation.

3. CFD MODELLING

The array modelled is a rotated triangular ar-
rangement with pitch to diameter ratio (P/d) of
1.32, tube diameter of 38mm and the total width
of section is 300mm, which corresponds to the ex-
perimental setup in order to facilitate validation.
Also by modeling a wide array artificial block-
age effects can be avoided, the modelled array
arrangement can be seen in figure 1.

The simulations only consider displacement of
the central tube on the third row, as this is typi-
cal of a tube in the centre of a bundle. The sides



Figure 1: Schematic of normal triangular tube
array of P/d=1.32.

are modelled as no-slip walls in order to accu-
rately replicate the experimental setup.

The mesh is divided into hexagonal regions
around each tube, the detail of which can be seen
in figure 2.

Figure 2: Detail of hexagonal structure of grid.

This approach has the advantage that it al-
lows for a much more structured mesh around the
tubes, by splitting each into distorted quadrilat-
eral shapes, it can then be easily populated with a
structured mesh of quadrilateral cells, over which
the user has a large amount of control. It also al-
lows for the displacement of a single tube without
need for the whole mesh to be regenerated. For
the rest of the domain(i.e. outside the array) tri-
angular cells were used as these allowed for easy
meshing of regions with cell size gradients, thus
leading to a computationally less expensive sim-
ulation.

Within the array 360 cells of equal circumfer-
ential length are used around each tube along
with boundary layer cells on the surface with an
initial thickness of 0.01mm and growth factor of
1.2 this allowed for accurate numerical analysis

of this critical region in which velocity gradients
are large. Outside of the boundary layer region
cells of approximately 0.5mm size were used. The
fluid domain extends over 30 tube diameters to
the rear and 10 tube diameters to the front to en-
sure the outflow and velociy inlet boundary con-
dition effects are minimised.

The CFD package Fluent 6.2 was used to per-
form the simulation using a Reynolds Averaged
Navier-Stokes solver. The realizable k-ε turbu-
lence model was used in order to attain turbu-
lence closure.

Simulations were carried out for the tube dis-
placed to 1mm for a range of Reynolds number.
A 1mm displacement was used as it corresponds
to a vibration ampitude of under 2%, which is a
realistic limit on tube vibration fot critical veloc-
ity (Weaver and Yeung, 1984). The variation of
Reynolds number was for the most part achieved
by varying the value of fluid viscosity and using
a constant inlet velocity of 10m/s. Simulations
were also run in which the velocity was modi-
fied in order to investigate how well correlated
these results were and show that the scaling of
force coefficients is with Reynolds number and
not just one of its variables. Table 1 summarizes
the range of Reynolds numbers tested, as well
as the values of U0 and μ that were used whilst
holding the others constant to achieve this. It
was found that despite the high mesh density,
over 600000 cells, the simulations ran within a
reasonable timescale.

Re U0(m/s) μ(kg/ms) × 10−6

13007 5 35.8
15608 6 29.8
18210 7 25.6
20811 8 22.4
23412 9 19.9
26014 10 17.9
28615 11 16.3
31217 12 14.9
33818 13 13.8
36420 14 12.8
39021 15 11.9
41622 16 11.2
44224 17 10.5
46825 18 9.94
49427 19 9.42
52028 20 8.95

Table 1: Values of U0 and μ simulations were run
for.



4. RESULTS

4.1. Validation

Two methods were used to validate the results.
Firstly the pressure distribution around the dis-
placed tube was compared with data obtained
experimentally (Mahon, 2007), it can be seen in
figure 3 that there is good correlation between
the two results right around the circumference of
the tube. The angle is defined by starting at the
front of the tube and moving clockwise around it.
As can be seen the static pressure is lowest at the
top and bottom of the tube as would be expected,
as this is the region through which the fluid has to
flow fastest due to the smaller area. The highest
pressure is at the front of the tube and despite
the local maxima at the rear of the tube there
is still a significant overall drop across the tube
giving rise to the drag force. Although it is hard
to see due to the relatively small displacement
the pressure distribution is not symmetrical. It
is this small variation in pressure that gives rise
to the lift force on the displaced tube. If the
pressure values at various points are compared
directly (2) it can be seen that the results are in
reasonable agreement.
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Figure 3: Pressure Coefficient around tube: —,
Numerical data; ×, Experiment data, 10m/s;

Posistion Numerical Experimental
90 -0.504 -0.303
180 0.2851 0.349
270 -0.5371 -0.38

Table 2: Comparison of Pressure Coefficient .

The second method of verifying the results is
to examine the pressure drop across the array for
a range of velocities. Zukaukas (1972) has per-
formed in depth studies into the pressure drop
across various arrays and produced empirical re-
lationships for them. When the pressure drop
across the array is compared with the results pre-
dicted by Zukaukas the correlation is good as can

be seen in figure 3 with all of the predicted re-
sults gave slightly higher values of pressure drop.
These comparisons with experimental data sug-
gest these relatively inexpensive CFD simulations
are reliable.
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Figure 4: Comparisson of pressure drop accross
array. x, Zukaukas; ◦, Numerical data.

4.2. Fluid Forces

When the drag force on the displaced tube is ex-
tracted and plotted against the freestream veloc-
ity on a log log scale the relationship can be easily
seen. When a trendline is fitted to the data it in-
dicates that the drag force scale with U1.9 rather
than 2 as has been traditionally thought.
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Figure 5: Variation of Drag force with Reynolds
Number.

This would indicate that the fluid force coef-
ficients due to the pressure distribution around
displaced tube (i.e. ignoring viscous forces, which
are significantly smaller) are not solely dependant
of the dynamic head.

However in the quasi-unsteady model the lift
and drag coefficients are used as inputs that scale
with Reynolds number as so will be examined.
Firstly the coefficient of drag. As can be seen in
figure 6 the coefficient of drag varies only slightly
with Re, dropping of marginally as Re increases.
There is one unexplained spike in the data at
a Reynolds number of 36420 though its effect
should be minimized due to the small depen-
dance on CD. The values are marginally higher



than those predicted by Granger and Paidous-
sis (1996) though due to the fact the drag force
has only a minor effect on the predicted values
of critical velocity so this should not be a major
issue.
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Figure 6: Variation of Drag Coefficient with
Reynolds Number.

The gradient of the coefficient of lift, ∂CL
∂y vari-

ation with Reynolds number can be seen in figure
7. The value changes significantly with increas-
ing Reynolds number, reducing nearly an order
of magnitude over the range of Reynolds number
from 13007 to 52028. Granger and Paidoussis
(1996) had used as inputs, values of ∂CL

∂y that
varied only with P/d.
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Figure 7: Variation of Lift Force Coefficient Gra-
dient with Reynolds Number.

The variation of Reynolds number here was
achieved by varying the values of viscosity, how-
ever the variation of Reynolds number with
changing velocity was also investigated and it was
found that similar values of ∂CL

∂y were obtained,
this would suggest that the scaling is with Re and
not just one of its variables. Table 3 shows the
comparison between coefficient of lift values for
varying velocity and viscosity.

4.3. Application to Quasi-unsteady Model

Using the values for ∂CL
∂y and Cd obtained here

and the model developed by Meskell (2005) the
critical velocity has been calculated for a range
of mass ratios and Reynolds number.

Re Coefficient of lift
Viscosity varied Velocity Varied

13007 -14.5 -14.3
20811 -15.6 -17.9
31217 -10.1 -8.2
41622 -5.3 -5.3
52028 -2.5 -0.6

Table 3: Comparison of Lift coefficient for vary-
ing velocity and viscosity .

As can be seen in figure 8 in which the critical
velocity is plotted against mass damping param-
eter, for a Reynolds number of 32127, at higher
levels of mass damping parameter the mass ra-
tio has a significant effect on the critical velocity,
with a increasing mass ratio causing a decrease in
critical velocity. However as mass damping pa-
rameter increases stiffness-controlled fluidelastic
instability will dominate.
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Figure 8: Variation of Critical Velocity with
Mass-damping Parameter for a range of Mass
Ratios.

In figure 9 again critical velocity is plotted
against mass damping parameter however this
time the effect of variation of Reynolds num-
ber is examined. As can be seen the Reynolds
number has a significant effect on the critical ve-
locity at all levels of mass damping parameter.
An increase in Reynolds number leads to a clear
increase in critical velocity. Experimental data
from various studies with similar conditions (i.e.
single flexible tube in the centre of an otherwise
rigid array and similar pitch to diameter ratios)
has been overlaid on the graph. The model com-
pares reasonably well with the experimental data
suggesting the applicability of CFD for obtain-
ing the required fluid force coefficients. In ad-
dition scatter can be seen in the experimental
data which has previously had no definitive ex-
planation, It is possible that this scatter is due
to variation of Reynolds number
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Figure 9: Variation of Critical Velocity with
Mass-damping Parameter for a range of Reynolds
Number.

5. CONCLUSION

Steady flow through a normal triangular array
of pitch to diameter ratio of 1.32, with a single
displaced tube in centre of array was simulated
using a RANS solver. Force coefficients were ob-
tained and used as inputs into the quasi-unsteady
model through the use of the simple wake model
proposed by Meskell (2005). Stability maps of
critical velocity were then created for varying val-
ues of Reynolds number and mass-damping pa-
rameter.

The predicted stability maps for critical veloc-
ity show a significant amount of variation with
Reynolds number, and also with mass ratio for
higher mass damping parameters, thus indicat-
ing that these parameters can not be ignored in
analysis of fluidelastic instability.

It was also shown that the inputs for the model
obtained from numerical analysis predicted re-
sults in the range of experimental values, and so
can be concluded that this is a viable method for
obtaining these required coefficients
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