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ABSTRACT 
The seismic design of thin cylindrical water 

storage tanks takes into account beam-type 
vibration but not simultaneous oval-type vibration. 
In this study, an experimental and analytical 
investigation was conducted on the nonlinear 
response of beam-type vibration upon the 
generation and growth of oval-type vibration. The 
resonance frequency of the beam-type vibration 
shifted to a lower region and the magnification 
factor decreased with the increase in oval-type 
vibration by large input excitation. The application 
of a nonlinear single-degree-of-freedom system 
model revealed that this response was due to 
coupling between the beam-type vibration and oval-
type vibration. In addition, a nonlinear finite 
element method capable of accurately simulating 
oval-type vibration is proposed. The new method 
simulates the nonlinear response of beam-type 
vibration with a high degree of accuracy. 

1. INTRODUCTION 
The walls of large-scale cylindrical water storage 

tanks are thin and deformable. These walls, together 
with the water contained in the tank, create a 
coupling vibration system between the fluid and the 
structure in which beam-type or oval-type vibration 
occurs. Clarification of the coupling vibration 
behavior is a significantly fundamental issue in 
seismic design. Considerable research has been 
conducted on beam-type vibration and oval-type 
vibration (Chiba et al., 1986; Amabili, 2000; Fujita 
and Saito, 2003). However, there is a little research 
regarding the vibration behavior caused by coupling 

between beam-type and oval-type vibration. Here, 
beam-type vibration defines vibration modes that 
have axial half wave number 1≥m  and 
circumferential wave number 1=n . Oval-type 
vibration defines higher-order vibration modes in 
the circumferential direction and generated on the 
sidewall, with 1≥m  and 2≥n . Both oval-type and 
beam-type vibration simultaneously occur during 
earthquakes. Therefore, it is necessary to clarify the 
influence of oval-type vibration on beam-type 
vibration, the behavior of which is a significant 
issue in seismic design. 

In this study, sinusoidal frequency sweep tests by 
large input excitation were conducted using a 
cylindrical test tank. Then, the nonlinear response 
of the beam-type vibration was investigated when 
the oval-type vibration increased by large excitation. 
Next, assuming that the amplitude of oval-type 
vibration causes some out-of-plane deformation of 
the test tank sidewall and a decrease in flexural 
rigidity, it is proposed that the characteristics of 
beam-type vibration change due to coupling 
between beam-type and oval-type vibration. Based 
on the proposal, an equivalent nonlinear coupling 
vibration model with a single-degree-of-freedom 
(1DOF) system was created. It was demonstrated 
that this model can satisfactorily explain the results 
of the sweep tests. In addition, a new analysis 
method based on the finite element method 
simulating oval-type vibration is proposed. The 
method verified that the nonlinear response of 
beam-type vibration obtained in the tests occurs due 
to coupling between beam-type and oval-type 
vibration. 



2. VIBRATION EXPERIMENT 

2.1 Experimental method 

Figure 1 shows a photo of the test tank used in 
the vibration experiment. Figure 2 shows the 
dimensions and shape of the test tank. The 
cylindrical part of the test tank is aluminum alloy 
and the top and bottom parts are fixed by steel 
flanges. The input acceleration applied by the 
shaking table and the response acceleration at the 
top of the tank are measured by accelerometers set 
on the shaking table and at the top of the tank. The 
response acceleration at the top represents the 
response acceleration of beam-type vibration. Non-
contact type displacement meters, which are laser 
displacement sensors, are set at 0° and at a tank 
height of 1200 and 680 mm. Displacement at the 
1200-mm height represents the displacement at the 
top of the test tank and the amplitude of beam-type 
vibration. Displacement at the 680-mm height 
represents that of the body of the tank and the 
amplitude of oval-type vibration. 

Frequency sweep tests were conducted by 
sinusoidal excitation using the test tank 95% filled 
with water (1140 mm of the tank height). The 
bottom of the tank was excited by the shaking table 
between 0° and 180° horizontally. The sweep extent 
of excitation frequency included the primary natural 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Test tank. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Dimensions and shape of test tank. 

frequency of beam-type vibration. The sweep rate 
was set at 0.2 Hz/s. A varying magnitude of input 
acceleration was adopted. The other test conditions 
are shown in Table 1. Amplitude and phase 
response curves were calculated using the input 
acceleration and response acceleration at the top 
and then the predominant frequency and change of 
magnification factor were investigated. In this paper, 
resonance frequency is defined as the predominant 
frequency. 
 

Case Input acc. (G) Exciting frequency range (Hz)
1 0.09 5 – 49.5 
2 0.09 49.5 – 5 
3 0.11 5 – 49.5 
4 0.11 49.5 – 5 
5 0.21 5 – 49.5 
6 0.21 49.5 – 5 
7 0.54 5 – 49.5 
8 0.55 49.5 – 5 
9 1.16 5 – 49.5 

10 1.56 5 – 49.5 
11 0.11 5 – 49.5 

 
Table 1: Test conditions. 

2.2 Experimental results 

Figures 3 and 4 show key examples of the 
amplitude and phase response curves, taken from 
Cases 1, 7 and 9. Both figures demonstrate a 
nonlinear vibration response in which the resonance 
frequency shifts to a lower region as the input 
acceleration increases. Moreover, Fig. 3 shows that 
the magnitude factor decreases dramatically as the 
input acceleration increases further. 

3. NONLINEAR COUPLING VIBRATION 
MODEL WITH 1DOF 

3.1 Derivation of nonlinear coupling vibration 
model with 1DOF system  

Here, we consider the relationship between 
flexural rigidity and out-of-plane deformation of the 
test tank when beam-type and oval-type vibration 
are coupled. Let us suppose that the entire tank 
vibrates, which represents beam-type vibration 
occurs, with large-amplitude vibration of the 
sidewall caused by oval-type vibration. This state 
implies that the occurrence of oval-type vibration 
produces a significant change in the cross-section 
shape of the tank. If the large amplitude caused by 
oval-type vibration is non-negligible relative to the 
thickness of the tank, it can be regarded as a large 
deflection, that is, out-of-plane deformation. This 
finding is a good hypothesis for the occurrence of 
geometric nonlinearity. 
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To verify this hypothesis, large-deformation 

analysis was performed by finite element method 
(FEM) and the relationship between sidewall out-
of-plane deformation and flexural rigidity of the 
tank was assessed. First, as shown in Fig. 5(a), an 
FEM analysis model was made of the cylindrical 
test tank used in the vibration experiment. Next, as 
shown in Fig. 5(b), the model was given the oval-
type vibration mode as imperfection shape and then 
it was defined as the test tank having the sidewall 
out-of-plane deformation caused by oval-type 
vibration. The amount of imperfection represents 
the amplitude of oval-type vibration, that is, its 
magnitude. Giving a static load to the entire FEM 
model, the flexural rigidity of the tank was 
calculated from the displacement magnitude at the 
top of the model. Varying the imperfection 
magnitude, the relationship between flexural 
rigidity and amplitude of oval-type vibration can be 
obtained. The analysis was carried out using 
NASTRAN code. 

Figure 6 shows the relationship between the 
flexural rigidity of the tank and the amplitude of 
oval-type vibration. The vertical axis represents the 
ratio of flexural rigidity with the occurrence of 
oval-type vibration against that with no occurrence. 
This figure shows the analysis results with axial half 
wave number m=1 and various circumferential 
wave number n. Figure 6 reveals that flexural 
rigidity decreases as oval-type vibration increases. 
Especially in cases of a larger n value, the flexural 
rigidity decreases severely in excess of 10 mm of 
the amplitude. This feature is similar to that in other 
cases of various m (Maekawa et al., 2006). 
Consequently, it is clarified that the large amplitude 
of oval-type vibration causes the decrease in 
flexural rigidity of the tank. The geometric 
nonlinearity stated above is proposed to produce the 
nonlinear response of beam-type vibration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Analytical model used to calculate the 
relationship between flexural rigidity of the tank 
and amplitude of oval-type vibration. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Relationship between flexural rigidity of 
the tank and amplitude of oval-type vibration. 
 

 Mode shape and amplitude of oval-type vibration 
are given as imperfection shape and magnitude. 

(a) Tank model without 
oval-type vibration 

(b) Tank model with  
oval-type vibration 
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Figure 3: Amplitude response curves under various input acceleration: (a) 0.09G, (b) 0.54G, (c) 1.16G.
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Figure 4: Phase response curves under various input acceleration: (a) 0.09G, (b) 0.54G, (c) 1.16G. 
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Here, we create an equivalent nonlinear coupling 
vibration model with a 1DOF system based on the 
proposed hypothesis. First, the test tank is modeled 
as a beam of the 1DOF system. Then, the motion 
equation of the model is as follows: 
 

.00 αmxkxcxm NL −=++ &&&    (1) 
 
where m0 is mass, x displacement, c damping 
coefficient, kNL nonlinear spring constant depending 
on amplitude of oval-type vibration and α  
acceleration by external force such as earthquake 
motion. When the natural frequency of beam-type 
vibration having no amplitude of oval-type 
vibration is fL, then kNL of Eq. (1) corresponds to a 
linear spring constant, which is expressed by kL. 
Then, the nonlinear spring constant kNL with the 
occurrence of oval-type vibration is as follows: 
 

).(zrkk LNL =      (2) 
 
where r(z) represents a nonlinearity, the magnitude 
of which varies depending on amplitude z of oval-
type vibration. In other words, it is the change rate 
of flexural rigidity depending on the amplitude of 
oval-type vibration. The relationship in Fig. 6 
described above shows a typical example. Using Eq. 
(1) and (2) and defining ς  as damping ratio, the 
following equation is obtained: 
 

( ) .)(24 αππς −=⋅⋅+⋅+ xzrfxfx LL &&&   (3) 
 
Equation (3) represents the motion equation of the 
equivalent nonlinear coupling vibration model with 
1DOF system. 

3.2 Numerical analysis by equivalent nonlinear 
coupling vibration model with 1DOF system  

Here, using the equivalent nonlinear coupling 
vibration model with 1DOF system, we demonstrate 
that the influence of oval-type vibration on beam-
type vibration causes the shift in resonance 
frequency to the lower frequency region. Table 2 
shows the analysis conditions. m represents the 
axial half wave number and n the circumferential 
wave number. f indicates natural frequency and ς  
damping ratio. The data in Table 2 was obtained by 
eigenvalue analysis of the FEM model. In the 
numerical analysis, each oval-type vibration shown 
in Table 2 is assumed to have occurred because the 
purpose of the analysis is to verify the relationship 
between the characteristics of beam-type vibration 
and the out-of-plane deformation generated by oval-
type vibration. In addition, the constant damping 

ratio as shown in Table 2 is used on the assumption 
that there is no influence of oval-type vibration to 
change the damping ratio. The relationship as 
shown in Fig. 6 is used as r(z) of Eq. (3). Figure 6 is 
an analytical case of m = 1 and additional analysis 
has been conducted for the case of m = 2 and 3 
(Maekawa et al., 2006). 

Figure 7 shows the relationship between the 
declining rate of resonance point of beam-type 
vibration and the amplitude of oval-type vibration. 
Moreover, analytical and experimental results are 
compared. The vertical axis represents the ratio of 
resonance frequency with oval-type vibration 
against the natural frequency without it. The 
analytical results show that the resonance frequency 
of beam-type vibration becomes lower as the 
amplitude of oval-type vibration increases. In 
general, the declining rate is similar to that in the 
experiment. Especially, the pattern in the case of m 
= 1 is in good agreement with that in the experiment. 
Therefore, it is concluded that the proposed 1DOF 
system model can explain the shift phenomenon in 
the resonance frequency of beam-type vibration 
under large excitation. In other words, the coupling 
between beam-type and oval-type vibration changes 
the flexural rigidity of the beam-type vibration. As a 
result, the beam-type vibration causes the nonlinear 
vibration response. 

 
 
Case Oval-type vibration  Beam-type vibration 

 m n f (Hz)  m n f (Hz) ς  (%)
A 1 8 25.0  1 1 45.0 1 
B 1 12 52.4  1 1 45.0 1 
C 1 14 78.5  1 1 45.0 1 
D 2 14 83.8  1 1 45.0 1 
E 3 14 95.7  1 1 45.0 1 
F 1 12 52.4  1 1 45.0 10 

 
Table 2: Analytical conditions using 1DOF model. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Analytical results by 1DOF model. 
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4. NUMERICAL ANALYSIS BY 
NONLINEAR FINITE ELEMENT 

METHOD USING EXPLICIT METHOD 

4.1 Analytical method and model  

This section describes the nonlinear FEM 
proposed and conducted to clearly show that the 
oval-type vibration influences the characteristics of 
the beam-type vibration. 

The following points are important for highly 
accurate simulation of the oval-type vibration: 

• Three-dimensional modeling. 
• Coupling analysis between fluid and structure 

because oval-type vibration produces the 
coupling vibration system consisting of the tank 
structure and the contained water. 

• Large-deformation analysis because of its 
highly accurate simulation of large-amplitude 
motion by oval-type vibration. 

• Time-history analysis. 
Considering the above, a time-history analysis 

utilizing FEM and taking into account coupling 
analysis between fluid and structure and large-
deformation analysis was developed. The structural 
part of the analytical model had the shell element 
for geometric nonlinearity. Belytschko-Lin-Tsay 
shell element (Belytschko et al., 1984) was used in 
this analysis. The fluid part had the solid element 
following Euler’s equation. These elements were 
also needed for three-dimensional modeling. The 
arbitrary Lagrangian-Eulerian (ALE) method was 
adopted for the coupling analysis between fluid and 
structure. Explicit time integration method using 
centered difference was adopted for the time-history 
analysis considering stability of solution. The 
general code LS-DYNA was used in actual analysis. 
It was previously reported that this method had the 
potential to simulate oval-type vibration with a high 
degree of accuracy (Maekawa et al., 2007). 

Figure 8 shows the analytical model. The total 
number of nodes is 30023. The number of shell 
elements in the structural part is 7144 and the 
number of solid elements in the fluid part is 25800. 
The outer lip of the tank, etc. was left out for 
rationalization of modeling. The material constants 
are summarized in Table 3. In this table, E 
represents Young’s modulus, υ  Poisson’s ratio,  ρ  
density and K bulk modulus. Sinusoidal wave 
frequency sweep was performed in this analysis as 
in the case of the experiment. The sweep rate was 
0.2 Hz/s as in the experiment and the excitation 
direction was horizontal. The input acceleration was 
0.09 and 1.16 G. The amplitude response curve was 
calculated between response displacement at the top 
of the analytical model and input displacement. 

Figure 9 shows analytical results. Deformation of 
the tank wall demonstrates that the method can 

accurately simulate behavior of oval-type vibration 
with large amplitude.  
 

 E ν  ρ  K 
 (MPa)  (kg/m3) (MPa)

Al alloy (tank body) 69420 0.33 2680 – 
Steel (platform/flanges) 203000 0.3 7800 – 
Polycarbonate (top plate) 1960 0.3 1190 – 
Water (in the tank) – – 1000 2200

 
Table 3: Material constants used in FEM analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Analytical model for nonlinear FEM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Analytical deformation views (scale 
factor: 10) of the model at excitation frequency: (a) 
36Hz, (b) 37Hz, (c) 38Hz, (d) 39Hz. 
 

4.2 Comparison between analytical and 
experimental results 

Figure 10 shows the relationship between input 
acceleration and resonance frequency. The natural 
frequency of the test tank used in the experiment is 
40.23 Hz and that of the analytical model is 41.04 
Hz. From this difference, the vertical axis of Fig. 10 
is represented by the ratio of resonance frequency 
against these natural frequencies. The analytical 
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results are in good agreement with the experimental 
results. Figure 11 shows the relationship between 
input acceleration and magnification factor. The 
analytical results in the case of input acceleration of 
1.16 G agree very well with the experimental results. 
The value in the case of 0.09 G differs slightly from 
that in the experimental. However, the Q factor is so 
large in such small excitation and the resonance 
curve is so sharp that the result values often 
fluctuate due to a bit of error in the analytical 
conditions. 

From the items discussed above, it can be 
concluded that the proposed nonlinear dynamic 
analysis using FEM can simulate, with a high 
degree of accuracy, the nonlinear vibration response 
of the test tank as obtained in the experiment. This 
analytical result shows that the oval-type vibration 
increases and is coupled with the beam-type 
vibration and consequently influences the 
characteristics of the beam-type vibration. In other 
words, the generating mechanism of the nonlinear 
response of the beam-type vibration is proposed. 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Relationship between input acceleration 
and resonance frequency.  
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Relationship between input acceleration 
and magnification factor.  

5. CONCLUSION 
It was clarified experimentally that the nonlinear 

vibration response of a cylindrical water storage 
tank occurred upon extreme excitation. Nonlinear 
behavior showed a shift in resonance frequency to a 
lower region and a decrease in magnification factor. 

A coupling vibration model with 1DOF system and 
nonlinear FEM taking into account large-
deformation analysis and coupling vibration 
analysis between fluid and structure were proposed. 
The analytical results demonstrated that the 
nonlinear vibration response was caused by the 
coupling effect with oval-type vibration. The 
proposed nonlinear FEM analysis method 
comprises the ALE method as the coupling analysis, 
large-deformation analysis using nonlinear shell 
element and time-history analysis by explicit 
method. Comparison with the experimental results 
indicated that the proposed FEM method can 
simulate the nonlinear vibration behavior with a 
high degree of accuracy. 
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