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ABSTRACT

This paper is devoted to a simplified model for the
simulation of self-propelled eel-like body. After
a description of this model based on an exten-
sion of the Lighthill theory, it is explained how
Navier-Stokes simulations have been used to cal-
ibrate and to validate it. In a second part, the
parameterization of laws of deformation is under
consideration to be optimized, using efficiency as
cost function.

1. INTRODUCTION

Among numerous species which can be observed
in Nature, fishes have always fascinated human
beings with their incredible ease to couple
instinctively Newton’s laws and Navier-Stokes
equations in order to swim. The efficiency and
the great maneuvrability of their locomotion
function developed during their evolution com-
pose a tremendous application field for fluid
engineering illustrated by the growing number
of related biomimetic studies. During few last
years, a French project (ROBEA followed by
an ANR project RAAMO) has been started
to design an efficient autonomous flexible un-
derwater eel-like robot (see Figure 1). In this
framework, some developments have been done
and previously presented in FIV2004 to achieve
Navier-Stokes simulations of such a self-propelled
fish-like body (see Leroyer & Visonneau, 2004,
2005). In the same time, a simplified model
has been designed to have a real time simulator
capable to be used for the control. The proposed
model is based on Lighthill’s original "Large
Amplitude Elongated Body Theory", denoted
L.A.E.B.T. (see Lighthill, 1960, 1969), but both
extended to 3-D and to take into account viscous
effects.

In a first part, the hypothesis of the model are
detailed, so as the calibration and validation pro-
cedures using the reference database coming from
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Figure 1: views of the prototype

the Navier-Stokes solver. Then, the second part
is devoted to first attempts concerning optimisa-
tion of deformation laws.

2. SIMPLIFIED MODEL AND
NAVIER-STOKES SIMULATIONS

2.1. Description of the simplified model

Let’s consider an elongated fish-like body of
length L, whose back-bone is represented by
a curvilinear coordinate X1 ∈ [0, L]. The
L.A.E.B.T. of Lighthill is based under the
following assumptions:

• The fluid is first of all considered as inviscid,
incompressible and is irrotational everywhere
except on a free vortex sheet shedded from
the sharp trailing edge of the caudal fin. Still
following Lighthill, the wake is then isolated
from the flow laterally surrounding the fish
by a geometric plane π orthogonal to the fish
backbone and passing through the trailing edge.
Hence, only the fluid contained in the control
volume D of figure 2 is considered.

• Due to the slender geometry of the fish (and
the robot), the fluid flow in D is approximated
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Figure 2: definition of the fluid control volume

by a stratification of planar potential flows trans-
verse to the fish back-bone (cf. figure 2). Hence,
each of these flow slices induces a lineic transver-
sal effort acting on the body which can be ex-
pressed by added mass terms.
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Figure 3: definition of the body axis

Under these hypotheses, the momentum con-
servation law, written on the half space fluid do-
main D following the body during its motion, fi-
nally leads to a distribution of reactive lineic fluid
forces and torques acting all along the body and
a propulsive term represented here by a punctual
force acting at the tail. Formulae for 3-D defor-
mation are not described here since the optimiza-
tion only concerns planar deformation (see Boyer
et al. (2007b,a) for a complete description of the
model). In the case of planar deformation (and

motion), the curvature vector is aligned with
−→
t3 ,

−→
t3 remains identical equal to the fixed vector −→e3

of the reference frame, and (
−→
t1 ,

−→
t2 ) remain a lin-

ear combination of (−→e1 ,−→e2) (see figure 3). The
distribution of fluid forces is then only reduced to

a lineic force
−→
frt along the body and a propulsive

term denoted by
−−→
FrT with the following expres-

sions (see also figure 4):

•
−→
frt = −ma2

d(v2

−→
t2 )

dt
,

•
−−→
FrT =

[

v1 ma2 v2

−→
t2 − 1

2
ma2 v2

2

−→
t1

]

X1=L
,

with ma2 the added mass of the 2-D section

through
−→
t2 and −→v = vi

−→
ti the velocity of the

centre of the considered body section.

In order to improve the accuracy of the dy-
namics, a supplementary added mass concen-

trated force applied onto the nose
−−→
FrH has been

added to model the action of the axial relative
flow with respect to the body (this reactive force
can not exist in the Lighthill theory since the
flow is supposed not to be disturbed axially) :
−−→
FrH = −Ma1

dv1

dt
(0)

−−→
t1(0).

Finally, the resultant of the whole distribution

of fluid force
−−−→
Ff→b on the body can then be ex-

pressed by equation 1. Resultant torque at the
point O1 where the Newton’s laws are solved can
also be evaluated using the balance of angular
momentum on the same control volume D (see
equation 2). More details on the whole model
can be found in Boyer et al. (2007b,a).

−−−→
Ff→b =

∫ L

0

−→
frt(X1)dX1 +

−−→
FrT +

−−→
FrH (1)

−−−→
Mf→b(O1) =

d

dt

∫ L

0

−−→
O1P ⊗ ma2 v2

−→
t2dX1

+
−−→
O1H ⊗

−−→
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Figure 4: modelled reactive forces

In order to integrate more physics in the model
and then improve the behaviour of the previous
"pure reactive model" with respect to the real-
ity, two corrections have been added to it. The
first one complies with the slender body theory
by modeling the pressure and viscous drag forces
slice by slice. It is done through two lineic forces
−→
fvt and

−→
fvl, respectively transversal and longitu-

dinal to the cross section (see figure 5). Their
expression are given as follows :

−→
fvt = −

1

2
ρHCd2 |V2|V2

−→
t2

−→
fvl = −

1

2
ρP Cf |V1|V1

−→
t1



where H and P are respectively the height and
the perimeter of the X1 cross section (which in
our case is elliptic). ρ represents the density of
the fluid. Cf is the non-dimensional axial friction
coefficient, and Cd2 is the non-dimensional drag

coefficient for a motion along
−→
t2 of the considered

section.
The second correction consists in modeling the

local resistance due to the rounded nose by a

punctual force
−−→
FvH applied at X1 = 0 (see fig-

ure 5). Its general expression is deduced from
experimental fluid mechanics (Hoerner, 1965):

−−→
FvH = −

1

2
ρCp S |V1(0)|V1(0)

−→
t1 (0)

with S the aera offered to the fluid when the eel
moves axially, i.e. the area of the projection of
the surface of the head onto the plane normal to
−→
t1 (0).
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Figure 5: modelled viscous effects

2.2. Calibration of the model

For the moment, the model has been calibrated
using a temporary shape of a one meter length
body with elliptic cross-sections varying along
the body. Details on the analytical description of
the shape can be found in Boyer et al. (2007a).

In accordance with the previous developments,
four parameters have to be specified, i.e.: the
axial viscous drag coefficient Cf , the pressure
drag Cp related to the rounded nose of the head,
the transverse pressure drag Cd2 and the axial
added mass coefficient Ma1. In order to fix all
these parameters, the following "identification
process" has been pursued, by using both ana-
lytical and experimental data of fluid mechanics
and CFD results on basic cases :

Identification of Cf : this coefficient is sim-
ply based on classical boundary-layer relation for
a flat plate (Blasius and Von Karman formulae,
respectively, for laminar and turbulent regimes).
These relations only depend on the local longi-
tudinal Reynolds number, denoted by ReX1//.
Keeping in mind the fact that the transition phe-
nomena is not yet taken into account correctly in

the Navier-Stokes solver, RANSE simulations of
flow around around a 2-D thin flat plate were
performed to fix the numerical Reynolds number
transition (see figure 6). The law of Cf is finally
described by :

ReX1// ≤ 8.104 , Cf = 0.664/Re0.5
X1//

ReX1// > 8.104 , Cf = 0.059/Re
1/5
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Figure 6: Cf coefficient on a 2-D thin flat plane

Identification of Cp : this coefficient was iden-
tified by comparing the Navier-Stokes simulation
to those provided by the simplified model for a
gait in which the fish is released with an initial
forward speed (1L/s) in a straight and rigid
configuration. The friction drag being known by
the evolution of Cf previously defined, this case
enables to simply calibrate Cp to have a similar
reduction of the forward velocity. Cp = 0.036
leads to quasi-superimposed curves in our case.

Identification of Cd2 : like a flow around os-
cillating cylinder, Cd2 should be time-dependent
on the transverse Reynolds and the Keulegan-
Carpenter numbers (see Sarpkaya, 1986). But
the problem is here quite different from studies
which can be found in the literature : due to
the the forward fish motion, the flow pertur-
bations generated by a given cross-section no
longer influence the section itself but rather the
neighboring sections along the beam axis. Fur-
thermore, the amplitude of oscillations changes
when moving along the body, and sections do not
have circular profiles but elliptic ones for which
fewer experimental data are available. Hence,
guided by simplicity but keeping the right order
of magnitude of this transverse force, a constant
value of 1.98 was chosen for Cd2 (in accordance
with the experimental data of Hoerner (1965)
for a 2-D transverse flat plate plunged in a
stationary flow, corresponding to the orders of
magnitude of the transverse Reynolds obtained
with the tested body).



Identification of Ma1 : with the adopted ge-
ometry of the head, an half axial added mass
of an ellipsoid enduring a translation along its
principal axis was taken for Ma1, i.e. ρ k 2π

3
abc,

where k = 0.32 is a dimensionless value analyti-
cally computed by Lamb (1932), and 2a, 2b and
2c are the axis lengths of the ellipsoid.

2.3. Validation of the model

This fluid force model has been programmed
in C++ coupling to a Cosserat beam theory
(Boyer & Primault, 2004) to solve the dynamics
of the robot and to the reach the internal torques
(Boyer et al., 2007a, 2006). In fact, the eel is
here considered as a non-linear beam controlled
continuously along its material axis. It has also
been integrated in the Navier-Stokes solver. The
self-propelled dynamics of the robot can thus be
solved with similar conditions using either the
RANSE equations (denoted by N-S) or the sim-
plified model (marked S-M). In all cases, motion
of the head results from the solved interaction
between the dynamics of the body and the fluid
response to the deformation, since only the law
of curvature in time is imposed.

2.3.1. reference database from CFD

Navier-Stokes simulations have been performed
using ISIS-CFD, developed by the CFD group
of the Fluid Mechanics Laboratory of Centrale
Nantes. It is dedicated to simulate incompress-
ible fluid flows involving turbulence, free surface
and moving bodies. A finite-volume method is
used to solve the incompressible unsteady RANS
equations under isothermal conditions on un-
structured meshes, enabling to deal with complex
geometries.

For this specific application, a grid dependence
study (with structured and unstructured meshes
from 65 000 cells up to 950 000 cells) has been
carried out to be sure that the numerical error
is under control. The influence of the turbu-
lence model (in both law of wall and near-wall
configurations) has also been studied, keeping
the same imposed deformation of the body (see
Boyer et al. (2007a) for complete results). Dif-
ferences obtained between all the reached for-
ward velocities do not exceed 5% whatever the
grid and the turbulence model used. Conse-
quently, all the simulations for testing different
laws of deformation have been performed using
the coarser grid (designed for a law of wall tur-
bulence modelling) with the k − ω-SST turbu-
lence model (Menter, 1994). This configuration
ensures reasonable CPU time cost and a good

ratio of the accuracy over the CPU time cost (in
fact accurate enough while keeping in mind that
the main objective is to validate the dynamics
of the simplified model). Numerical features of
the Navier-Stokes solver and of the flow/motion
coupling are not detailed here but can be found
in Leroyer & Visonneau (2004, 2005).

2.3.2. forward straight-line gaits

For these tests, curvature through
−→
t3 has been

imposed to : K3 = K(X1) sin

[

2π

(

X1

λ
−

t

T

)]

.

A large number of tests (with different period
of oscillation T , wave length λ and amplitude K)
have been tested using this periodical law of de-
formation leading to a mean forward speed of the
head (marked v1,N−S(0) for the Navier-Stokes re-
sult and v1,S−M(0) for the simplified model).

ev1
=

|v1,N−S(0) − v1,S−M (0)|

|v1,N−S(0)|
(3)

Error ratio ev1
defined by equation 3 are finally

always below 4%, except one (equal to 9%). But,
for this one, forward velocity is very small (≈
0.3L/s), and the Reynolds number is then quite
low. Consequently, the inviscid fluid assumption
is surely less valid and the model of Cf more
dependent on the fish deformation.

2.3.3. turning gaits

Other laws of curvature have been tested, espe-
cially turning manoeuvres, keeping or not the
propulsion during the turning phase (turn is ob-
tained by imposing smoothly a constant curva-
ture along the entire body). Here again, it can
be seen that the model is able to capture the same
global dynamics of the head, and similar trajec-
tories (figure 7) with respect to the Navier-Stokes
simulations. Differences of mean final orientation
do not exceed 8% in all tested gaits.
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Figure 7: comparison of head trajectory for a
turning manoeuvre



3. OPTIMIZATION OF LAW OF
DEFORMATION

The simplified model is very economical in terms
of CPU time consumption. Thus, it is suited for
the on-line command of eel-like robot, but it can
also be used for optimization purpose.

3.1. Optimization procedure

The integration of the model in the Navier-Stokes
solver enables the use of the optimization tools
included in ISIS-CFD. The procedure consists
in maximizing a cost function F depending on
the flow variables Q(D) and the design vari-
ables D. The governing equation of the flow
R(D,Q(D)) = 0 (here defined by the simplified
model) are considered as constraints which must
be satisfied at each step of the design cycle. Some
bound constraints for D must be added in order
to keep realistic solutions. Thus, the variation
domain of the design variables is usually closed.
From a mathematical point of view, the problem
may be expressed as:

Maximize F (D,Q(D)) constrained to

R(D,Q(D)) = 0 with Li ≤ D ≤ Ls

Therefore, the design procedure consists in suc-
cessive gaits with different parameters (or design
variables) for the law of deformation whose val-
ues are modified by an optimization algorithm.
Thus, the design cycle may be described by:

1. Initialization of the design parameters D

2. Simulation of the gait Q(D) until reaching
stabilized average values

3. Evaluation of the cost function F (D,Q(D))

4. Update of D by the optimization algorithm

5. Goto step (2)

Here, optimizer has been managed by the way of
genetic algorithm and simplex method to predict
improved design variables at each optimization
step. For more details on these algorithms, (see
Duvigneau & Visonneau, 2006, 2004).

3.2. Parameters and cost function

Here, only the fluid point of view is considered.
The body undulation which is imposed is sup-
posed to be not power consuming and working
like a spring-mass system without losses.

Generally, studies about living species extract
positions of the body in time with respect to
the mean straightline (see Videler (1993) p103).
But this information contains both the shape

and head motion (only without the forward com-
ponent, i.e. with the same abscissa for the
head). For example, Tytell (1994) gives an ana-
lytical lateral deflection with respect to the mean
straightline by equation 4.

y(X1, t) = Ae
α

“

X1

L
−1

”

sin

[

2π(
X1

λ
−

t

T
)

]

(4)

For the optimization purpose, the curvature
d2y/dX2

1
has been imposed to obtain the same

deformation as those described by Tytell (1994).
But in our case, transversal displacement and ori-
entation of the head in time are not imposed but
solved. As our body shape is surely not similar
to the real eels studied, it is normal that these
solved parameters are finally not superimposed
with the analytical position y(0) and orientation
dy/dX1(0) included in the deflection law given
by Tytell (1994). However, as it can be seen on
figure 8 (corresponding to the initial parameters
of the deformation law), the same order of mag-
nitude is found again.
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Figure 8: Comparison of head orientation

Design variables D are those appearing in the
law of deformation, i.e. : D = {A,α, λ, T}. The
cost function is based on an efficiency criteria:
optimization aims at maximizing ηf defined by:

ηf =
Fr v1

Pf
, with Pf =

∫

body

[

⇒

σ −→n
]

.−→v dS

where v1 means the average forward velocity
reached by the self-propelled body and Fr the re-
sistive force for the same rigid shape when tow-
ing at the v1 velocity. Pf represents the aver-
age power transfered to the fluid to produce the

swimming motion (
⇒

σ means stress tensor, −→n the
outer surface normal vector and −→v the velocity
of the moving surface).

Some first attempts trying to optimize velocity
using parameters like amplitude and frequency
have been tested. But they always lead to the
highest range of amplitude and frequency, some-
times not realistic if the bounded constraint was
chosen very large. On the contrary, with effi-
ciency as the cost function, optimization reaches



D A (m) α λ(m) T (s)
Li 0.05 2.5 0.5 0.5
Ls 0.12 3.5 1.5 1.0

initial values 0.08 3. 1.0 0.75
optimized values 0.06 3.4 0.52 0.65

Table 1: optimization results

values in the definition domain of parameters.
Results of optimization (genetic algorithm fol-
lowed by simplex method to finalize the opti-
mization) using the simplified model are given
on table 1. Initial efficiency is equal to 0.68
whereas optimized value grows up to 0.77. How-
ever, trends are not the same concerning veloc-
ity (0.62L.s−1 for the initial law of deformation
against 0.47L.s−1 for the optimized one). The
optimized law give a Strouhal number around of
0.4 which is in the range of those observed among
living species (see Tytell, 1994).

4. CONCLUSION

First, this paper aims at describing the simplified
model of self-propelled eel-like body. Some com-
parisons with Navier-Stokes simulations show
that the dynamics behaviour is well reproduced,
leading us to investigate optimization by using
the simplified model which is very low CPU
consuming. Design variables, cost function
and optimization procedure are then described
in the second part. First optimized results
are promising, but need now to be controled
and validated by a-posteriori CFD computations.
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