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ABSTRACT

Three-dimensional large-eddy simulations of pul-
sating flow about a circular cylinder were per-
formed at a Reynolds number of 2580. The am-
plitude of the pulsations is set at 5% of the mean
flow velocity and the pulsation frequency is varied
around twice the frequency of vortex shedding in
steady flow. The results show that a mean drag
peak amplification occurs at a critical excitation
frequency which compares well to available exper-
imental data. The fluctuating drag and lift coef-
ficients are reported and their phase relationship
with respect to the imposed pulsation and the vor-
tex dynamics in the wake is discussed.

1. INTRODUCTION

Forces on bluff cylinders in cross-flow have been
studied extensively due to their importance in
engineering applications and associated flow-
induced vibration problems such as, for example,
in shell-and-tube heat exchangers, offshore risers,
etc. In practical situations, the incident flow may
have a pulsating component superimposed on the
average flow velocity, e.g., in flows delivered by
reciprocating pumps or in systems where surging
may occur for internal flows, or by combination
of currents and waves in offshore applications.
Aside from its practical importance, pulsed flow
over a circular cylinder offers a generic config-
uration to study and improve understanding of
more complex fluid-structure interactions. Pre-
vious work has demonstrated the existence of
vortex shedding lock-on for excitation frequencies
around twice the natural wake frequency (Barbi
et al, 1986). The effects accompanying lock-on
have also received attention (see Konstantinidis
et al, 2003, and references cited therein). How-
ever, a survey of the published literature indi-
cates a lack of data for the fluctuating forces on
a circular cylinder in pulsating cross-flow.

The objective of the present work is to inves-
tigate the effects of a small pulsation superim-
posed onto a steady flow on the vortex shedding,
vortex patterns and forces on a stationary cylin-
der in the subcritical Reynolds number regime.
Since the phenomenon of a cylinder oscillating in
a steady flow is analogous to that of a cylinder
subjected to an oscillating flow, the present in-
vestigation also seeks to give some information
on the effects of vortex-induced in-line vibration.
This approach allows one to concentrate solely
on the vortex dynamics in the wake.

2. FORCES IN PULSATING FLOW

Consider a fixed bluff cylinder placed normal to a
pulsating flow U(t) = Um + Uo sin(2πfot), where
Um is the mean flow velocity, fo and Uo are the
frequency and amplitude of pulsation, respec-
tively. The inline fluid force per unit length is
considered to be the sum of an inertial and a drag
force in the so-called Morison equation (Blevins,
2001),

Fx = 1

4
ρπD2CmU̇ + 1

2
ρD |U |UCd, (1)

where ρ is the fluid density, D is the cylinder di-
ameter, Cm and Cd are the inertia and drag co-
efficients, respectively. The dot denotes deriva-
tive with respect to time. The inertial force
accounts for two different mechanisms: (a) a
component due to the pressure waves induced
by the pulsations, and (b) a component due to
the added mass. The coefficients Cm and Cd in
Eq. (1) are assumed constant over a cycle but
they will be functions of three independent pa-
rameters UmD/ν (= Re, the Reynolds number;
ν is the kinematic viscosity of the fluid), Uo/foD,
and foD/Um. Depending on the relative magni-
tude of the coefficients there exist two different
regimes: for relatively low amplitudes (Uo/foD <
5) the total force is dominated by the inertia



Figure 1: Close-up view of a slice of the compu-
tational mesh near the cylinder surface.

force while for high amplitudes (Uo/foD > 25)
the drag force dominates. For intermediate am-
plitudes (5 < Uo/foD < 25), both the inertia
and drag force are important. The present study
concerns the lower end of the inertia-dominated
regime (Uo/foD ≪ 5) and complements previ-
ous work concerned with the intermediate regime
which has been dealt with previously by Zhou
and Graham (2000).

3. NUMERICAL METHOD

For the present study, large-eddy simulations
were carried out on a three-dimensional unstruc-
tured collocated grid to predict the velocity and
pressure field of pulsating cross-flow around a
circular cylinder in primitive variables. The in-
compressible Navier-Stokes equations were low-
pass filtered in space and the standard Smagorin-
sky eddy viscosity model was used for the unre-
solved scales (CS = 0.1). A finite-volume method
with second-order central-difference scheme was
employed for the spatial discretization on an
unstructured collocated grid comprising 746,688
cells per plane. A close-up view of the compu-
tational mesh near the cylinder surface is shown
in Fig. 1. A dense mesh is used in this region
in order to resolve the growth of the bound-
ary layer and its separation. The total dimen-
sions of the mesh are 18.8D and 10D along
the flow direction and transverse to it, respec-
tively. The cylinder is πD long and 32 planes
were employed along the span. A second-order
accurate Crank-Nicholson scheme was employed
for time advancement. More details on the nu-
merical scheme and grid independence studies
can be found in Liang and Papadakis (2007).
Table 1 shows a comparison of the global wake
parameters computed from the present numer-
ical scheme to experimental data (Konstantini-

Re St Cdm

PIV 2140 0.215 1.19
LES 2580 0.225 1.24

Table 1: Global wake parameters in steady flow.
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Figure 2: Result from a typical run; fo/fv = 2.0.

dis et al, 2005). Extensive comparisons of the
velocity wake field have also been made and
good agreement was found as reported elsewhere
(Liang and Papadakis, 2007, Konstantinidis et al,
2007).

4. NUMERICAL RESULTS

A number of computations were performed for
pulsation frequencies around twice the natural
vortex shedding frequency in steady flow, fv, for
which a strong interaction might be expected due
the lock-on phenomenon (Konstantinidis et al.
2003). The objective is to determine the varia-
tion of the mean and fluctuating forces on the
cylinder with pulsation frequency over relatively
small increments. For the present computations,
the Reynolds number based on mean inflow ve-
locity is 2580 and the pulsation amplitude is kept
constant at Uo/Um = 0.05.

4.1. Time history of forces

Fig. 2 shows the time trace of the forces exerted
on the cylinder from a typical run for fo/fv = 2.0.
Computations start at t = 0 from the steady flow
solution. After an initial transient the total drag
Cx(t) and lift Cy(t) coefficients become synchro-
nized with the imposed frequency of pulsation



18 19 20 21

0

1

2

fo t

SIMULATION MORISON'S EQ.

DRAG COMPONENT (Eq. 1)

INERTIAL COMPONENT (Eq. 1)

 

 

Cx(t)

Figure 3: Comparison between presnt simulations
and Morison’s equation for fo/fv = 2.0.

and their fluctuation magnitude increases com-
pared to steady flow. The dotted and dashed
lines show the contributions of the skin friction
and pressure distribution around the cylinder to
the total forces. Clearly, the contribution of skin
friction is negligible.

In Fig. 3, a comparison is made between the
present simulations for fo/fv = 2.0 and the Mori-
son equation (Eq. 1) for fo/fv = 2.0. For the
purposes of the present analysis, the inertia coef-
ficient is that resulting from potential flow theory
(Cm = 1 + Ca = 2; Ca is the added mass coeffi-
cient) and Cd is equal to the mean drag computed
from the numerical results. Eq. 1 predicts the
mean and fluctuation of the inline force quite well
although the phase is not accurately predicted.
At different frequency ratios the prediction of
the phase deteriorates due to variations in the
actual or effective added mass (Sarpkaya, 2004,
Williamson and Govardhan, 2004). Of course, it
is common to fit the coefficients to the data in or-
der to achieve better agreement (see, e.g., Zhou
and Graham, 2000). As it is shown further be-
low, the apparent success of Morison’s equation
in the low inertia-dominated regime conceals the
physics of the separated wake flow.

4.2. Mean drag force

Fig. 4 shows the variation of the mean drag co-
efficient vs. the pulsation/natural shedding fre-
quency ratio from different runs. It should be
clarified that the mean drag is the long time-
average of the total inline force per unit length
appropriately normalized, i.e.,

Cdm =
1

T

∫ T
0

Fx(t)dt
1

2
ρDU2

m

(2)

There is a range of frequency ratios centered
at fo/fv ≈ 1.9 for which the mean drag coeffi-
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Figure 4: Variation of the mean drag coefficient
with pulsation/natural vortex shedding frequency
ratio.
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Figure 5: Mean drag amplification with amplitude
of equivalent inline cylinder oscillation.

cient exhibits a peak amplification (the magni-
tude of the increase is discussed further below).
The centre frequency is termed ‘critical’ and de-
noted f∗

o /fv hereforth for reasons that will be-
come clear further below. Comparison is made
to experimental data from inline cylinder oscilla-
tions in steady flow (Nishihara et al. 2005) and
from a fixed cylinder in pulsating flow (Jarza and
Podolski, 2004) for similar perturbation ampli-
tudes (Uo/Um ≈ 0.05). The present computa-
tions agree well with the experimental data, par-
ticularly if the difference in the mean drag for
steady flow is taken into account. It should be
emphasized that the collapse of the peak would
be less satisfactorily if a different abscissa was
employed, e.g. foD/Um instead of fo/fv which
effectively absorbs the sensitivity of the Strouhal
number to experimental/computational setup.

In order to compare the peak amplification



data from a stationary cylinder in pulsating
flow to the analogous case of a cylinder oscil-
lating inline with a steady flow, we introduce
the equivalent normalized amplitude of oscilla-
tion, Xo/D = Uo/2πfoD and the normalized
mean drag Cdm/Cd0 where Cd0 is the drag co-
efficient in steady flow. Fig. 5 shows the present
data together with experimental data from inline
cylinder oscillations in steady flow (triangles) and
from a fixed cylinder in pulsating flow (circles).
Although most of the available data are limited
to low amplitudes Xo/D < 0.06, a linear relation-
ship seems to represent the data trend correctly.
This trend indicates that the wake response of
a cylinder in pulsating flow is equivalent to that
from a cylinder oscillating inline with a steady
flow. It is well-known that for transverse cylinder
oscillations a similar linear increase with ampli-
tude is observed (see Blevins, 2001, p. 58). How-
ever, the rate of mean drag amplification with
normalized amplitude is about one-fourth of that
reported here.

4.3. Fluctuating forces

Fig. 6 shows the r.m.s. fluctuation of the force co-
efficients in the inline and transverse directions,
Cx and Cy respectively. A dashed line shows
the contribution of the inertia term in Eq. (1)
to the total inline force, where the inertia coef-
ficient is that resulting from potential flow the-
ory as discussed above. As it would be expected,
Cx is dominated by the inertial component. The
r.m.s. fluctuation of the inline force coefficient is
only slightly overpredicted by Eq. (1) as seen in
Fig. 6 and the use of Morison’s equation to pre-
dict the fluctuating force magnitude (but not the
phase) would seem justified even without fitting
of the coefficients. However, the r.m.s. fluctua-
tion of Cx does not increase monotonically with
fo/fv due to variations in the actual added mass.
The r.m.s. of the transverse force coefficient also
displays a broad peak at f∗

o /fv, similar to that
of the mean drag, with peak values nearly four
times higher than the steady flow counterpart.
It might be noted that Cy is seemingly free from
inertial effects and therefore more representative
of the vortex dynamics in the wake.

4.4. Phase of the inline force

As pointed out by Bearman (1984) the magni-
tude of the fluctuating forces on a stationary
bluff-body “will give little indication of the likely
amplitudes of motion of similar bodies flexibly
mounted”. In view of the importance of the phase
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Figure 6: Variation of the fluctuating forces with
pulsation/natural shedding frequency ratio.
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Figure 7: Phase diagram showing the phase re-
lationship between Cx(t) and U(t). Vectors show
the force components for fo/fv = 2.0.

of the forces with respect to the velocity of the
fluid relative to the body for the energy trans-
fer mechanism, we employed cross-spectral anal-
ysis to determine the phase φ between Cx(t) and
U(t). The results show that φ ≈ π/2 within the
synchronization range. This might be expected
due to the dominance of the inertial component
on the total force. Frequency ratios lower than
the critical (f∗

o /fv ≈ 1.9) induce a phase slightly
above π/2 whereas for frequencies higher than
the critical the phase is slightly less than π/2.
At f∗

o /fv, the mean drag and fluctuating lift co-
efficients become maximum and φ = π/2. The
computed values of φ are shown schematically in
the phase diagram of Fig. 7. Note that U and U̇
are the velocity and acceleration of the fluid and
the phase is positive for clockwise rotation. Also,
the vertical axis is exaggerated for clarity.

The present computations suggest that the



magnified forces due to vortex shedding lock-on
can only sustain self-excited inline vibrations of
compliant structures, e.g. elastically supported
cylinders, only for frequency ratios lower than
the critical one. At frequency ratios higher than
the critical one, the phase of the drag force in-
duces a negative excitation (positive damping),
i.e. energy is transferred from the structure to
the fluid as shown graphically in Fig. 7. This
further substantiates the arguments by Konstan-
tinidis et al (2005) that the gradual change in
the timing of vortex shedding across the synchro-
nization range, which effectively determines the
phase of the fluctuating forces, suppresses the
inline vortex-induced vibrations of elastically-
supported cylinders near the middle of the syn-
chronization as observed in related studies.

It is intriguing to decompose the total in-
line force to an apparent mass force (the po-
tential added mass) and a ‘vortex drag’ force
as in the case of transverse cylinder oscillations
(Williamson and Govardhan, 2004). The vector
diagram in Fig. 7 shows the vortex drag coef-
ficient Cdv resulting from the above decomposi-
tion. In the particular example shown, which cor-
responds to a high frequency ratio, Cdv would be
almost in-phase with the flow velocity U . How-
ever, as discussed in the next section, there is
no evident component of the drag force related
to the vortex dynamics in the wake with such a
phasing.

4.5. Phase-averaged flow field

In order to relate the forces exerted on the
cylinder to the vortex dynamics in the wake,
Fig. 8 shows a representative sequence of phase-
averaged velocity vectors and pressure fields
around the body for fo/fv = 2.0. The lower plot
shows the corresponding instants in the pulsation
cycle (note that one vortex shedding cycle corre-
sponds to two pulsation cycles during synchro-
nization). It should also be noted that the veloc-
ity vectors shown are interpolated onto a coarser
mesh for clarity. During the phases shown (a–d),
an anti-clockwise vortex is formed on the lower
side of the cylinder. As the vortex grows in size
during formation, it moves towards the base of
the cylinder and produces a region of low pressure
near the cylinder surface. The pressure distribu-
tion in phase (b) indicates that the base pressure
coefficient becomes lower than in the remainder
of the pulsation cycle and therefore the drag force
is maximized just after the end of each pulsation
cycle (in agreement with the phase determined by
spectral analysis). At the same phase, the veloc-
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Figure 8: Phase-averaged velocity vectors and
pressure distribution around the cylinder for
fo/fv = 2.0. Dark and light shading indicates a
positive and negative pressure coefficient respec-
tively.

ity just outside the separation point on the lower
side attains its maximum value (≈ 1.75Um) and
it can be inferred from Bernoulli’s principle that
the pressure on the same side attains its lowest
value. As a result, the lift force peaks at this
phase pointing towards the bottom.

The above description illustrates how the vor-
tex formation and shedding process relates to the
generation of forces on the cylinder. As noted by
Konstantinidis et al (2005), the timing of vortex
shedding is shifted earlier in the periodic cycle for
low frequency ratios and vice versa at high fre-
quency ratios. As a result, the phase of the forces
vis-à-vis the relative velocity between the fluid
and the structure exhibits a systematic change
within the synchronization range. Furthermore,



the present findings provide some evidence that
there is a critical frequency ratio f∗

o /fv within
the synchronization range at which the mean and
fluctuating forces exhibit a peak amplification
and the phase relationship between the vortex-
induced forces and the velocity of the fluid vis-
à-vis the body are universal features of synchro-
nized bluff-body wakes (see Carberry et al, 2005,
for related data from a cylinder in transverse os-
cillation).

5. CONCLUSION

The present large-eddy simulations agree well
with available experimental data obtained in sim-
ilar configurations. The results support the view
that the wake response and the vortex dynamics
from a cylinder in pulsating flow are equivalent to
that of a cylinder oscillating inline with a steady
flow. There is a critical frequency of excitation
at which the mean drag and the fluctuating lift
forces exhibit a peak amplification. Therefore,
the mean drag force provides a useful diagnostic
tool to assess the state of the wake. The Morison
equation taken in tandem with the drag ampli-
fication linear fit provide a means to predict the
maximum fluctuating loads on cylindrical struc-
tures due to flow pulsations (but not the phase
of the inline force). Although the magnified fluid
forces due to vortex shedding lock-on have the
potential to destabilize a structure, they can only
sustain the vibration of compliant structures for
frequencies less than the critical; for frequencies
above the critical, the phase of the inline force
vis-a-vis the velocity of the fluid which is deter-
mined by timing of vortex shedding, induces a
negative excitation.
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