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ABSTRACT 
Significant research has been done on the 

annular-flow-induced vibration of a concentric 
centerbody commonly found in reactor internals. In 
order to utilize the research results for heat 
exchanger tubes, however, the practical conditions 
provided by the tube-support plate geometry should 
be considered. With heat exchanger tubes, the 
support causes leakage flow (very confined annular 
flow) and sometimes, additional divergent or 
convergent flow at the exit or the entrance of the 
support, which is due to chamfering of the support 
hole for manufacturing convenience. Therefore, 
when it comes to heat exchangers, leakage flow 
over a finite length and divergent or convergent 
fluid boundary conditions should be considered in 
addition to the basic annular flow. 

In this paper, an analytical as well as 
experimental approach is taken to investigate i) the 
instability mechanism, ii) the effects of diffuser 
parameters such as gap (leakage) size and diffuser 
angle on the instability and iii) develop an 
analytical model for the rod subjected mostly to 
annular flow and leakage and divergence flow 
through a finite-length diffuser at the middle of the 
rod. 

It is found by experiment and theoretical model 
that the tube loses stability by flutter at very low 
flow velocity. 

1. INTRODUCTION 
Considerable effort has been made to develop 

methodologies to predict instabilities on annular- or 
leakage-flow-induced vibration of a flexible rod. 
AS a result, several methods to predict the dynamic 
behavior have been developed, such as the 
linearized potential flow theory (Mateescu, 
Paidoussis and Sim, 1985, 1987, 1988), and the 
pressure-loss models (Hobson, 1982; Spurr and 
Hobson, 1984; Fujita and Ito, 1992; Langthjem et 
al., 2006). The basic dynamics due to annular flow 
are known by virtue of these models. On the other 

hand, to tackle industrial problems such as heat 
exchanger tube and control rod vibrations in gas 
and water cooled reactors, practical conditions must 
be considered. These include finite-length gap 
supports, much smaller gap resulting in leakage 
flow and convergent or divergent boundary 
conditions at the entrance and the exit of the support. 

Unlike the basic annular flow case, a rigid rod 
translating periodically in a finite length annular 
region of confined flow was studied by Mulcahy 
(1980). He studied the fluid forces and hydraulic 
damping. However, since the study was only done 
for still water, only positive damping was found. 
Later, Yasuo and Paidoussis (1989) tried to solve 
the flow-induced instability problem of heat 
exchanger tubes subjected to axial flow in a 
diffuser-shaped, loose intermediate support which is 
the same problem as this study tries to solve. In 
their study, potential flow theory was considered 
with a one-mode approximation of the inner tube. 
They suggested a critical flow velocity equation 
either for divergence and flutter. Application of this 
theory to real problems is, however, limited because 
of the one-mode approximation and unrealistic 
prediction of the critical flow velocity. 

2. EXPERIMENT 

2.1 Description of apparatus 

Experiments were conducted in a 2.5m long test 
section in which the flow rate ranged from 3 to 50 
SCFM (Standard Cubic Feet per Minute). A 2.2 m 
long and 15.9 mm (0.627 inch) diameter inner tube 
was used with several mid-supports (finite-length 
diffusers) having a length of 38.7 mm (1.525 inch). 
The inner tube was supported by four pins at one 
end, therefore, a total of eight points for both ends 
to simulate pinned-pinned boundary conditions. The 
gaps between the inner tube and supports were 0.3 
mm, 0.4 mm and 0.66 mm, and the annular gap 
between the inner tube and outer plastic glass tube 
is 5.0 mm. Vibration amplitudes were measured 
with four laser sensors in two directions near the 
supports at mid span and at one-fourth position 
along the test section. The measured voltage signals 



were gathered through a data acquisition system and 
analyzed with a Oros signal analysis system. Figure 
1 shows basic the test setup. 

 
Figure 1: Sketch of experimental apparatus 

 

2.2 Experimental results 

Figure 2 shows the measured vibration 
amplitudes for supports having 0.4, 0.66 and 2.2 
mm gap with a 10° diffuser angle. The reference 
flow velocity is the immediately upstream of the 
support. The inner pinned-pinned tube loses its first 
mode stability at very low flow velocity for all three 
cases. The first instability is clearly shown at the 
first mode, then, interestingly the third mode 
instability occurs earlier than the second mode one 
in Figure 2(c) or at almost the same velocity in 
Figure 2(b). It is, however, difficult to identify the 
mode correspond to the second instability from 
Figure 2(a) and 2(b). For small gaps, there is severe 
impacting during the first instability by which 
dynamic energy is possibly dissipated, and the 
second instability may not be observed. It is 
believed that the first critical flow velocities for the 
smaller gaps 0.3 mm and 0.66 mm occur less than 1 
m/s while for the largest gap of 2.2 mm, the critical 
velocity greater than 2 m/s. 

The amplitudes for different diffuser angles as 
functions of flow velocity are shown in Figure 3. 
From Figure 3 (a, b) and Figure 2 (a. b), we may 
conclude that the critical flow velocity of the rod in 
the smallest gap (0.3 mm) is higher than that of the 
rod in the larger gap (0.4mm) and even much larger 

in the gap (0.66 mm). Instabilities at higher modes 
are much more clearly observed for the larger 
diffuser angles. The first critical flow velocity of the 
tube with 0.4 mm gap and 20° diffuser angle is less 
than 1 m/s (≈0.6 m/s), and with 0.66 mm gap and 
30° diffuser angle is approximately 1.0 m/s. 
Instability in the second mode, however, was not of 
the same order even for the same angle of 20°. The 
0.3 mm diffuser, Figure 3(a), loses stability at 3 m/s 
while the 0.4 mm diffuser, Figure 3(b), destabilizes 
at 7 m/s.  
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Figure 2: Vibration response amplitude 
variation with flow velocity for a 10 ° 
diffuser and support gap of (a) 0.3 mm, (b) 
0.66 mm and (c) 2.2 mm 



 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 shows X-Y plots of the tube in the plane 

of the inner tube cross section which corresponds to 
Figure 2(a). Limit cycles are clearly observed in the 
flow velocity range of 0.5 m/s to 1.5 m/s, from 
when the amplitude start to increase sharply to 
when the amplitude decreases significantly where 
mild impact starts as shown in Figure 4(b). 

 
 

 

 

 
 
 
 

 

3. THEORETICAL MODEL 

3.1 General formulation 

The system under consideration consists of a 
basic annulus of constant height, H, much confined 
annulus of height, G, and small length of diffuser, 
Lα, at a small finite-length of gap support. Detailed 
parameters are shown in Figure 4. 

 

Figure 5: Dimension of diffuser 

The inner cylinder can vibrate in any mode shape, 
but in a beam-bending sense, with small amplitude. 
Based on test results showing that the critical flow 
velocity is very low compared to the basic annular 
flow cases, one is inclined to conclude that 
something happens at the support. In order to 
develop a theoretical model, therefore, flow 
perturbations are assumed only to be at the support. 
For this reason, before and after the support, the 
equation of motion of the flexible center body may 
be expressed as follows: 

4 2 2 2
2

4 2 22 ( ) 0f f f
h h h h hEI M U M U C M m

x x t x t t
∂ ∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

 (1) 

The equation of motion at the support may be 
expressed as follows: 

4 2 2 2
2

4 2 22 ( )f f f f
h h h h hEI M U M U C M m F

x x t x t t
∂ ∂ ∂ ∂ ∂

+ + + + + =
∂ ∂ ∂ ∂ ∂ ∂

 (2) 

fF means an additional forcing function induced by 
the fluid at the support. By assuming perturbation of 
every terms in equation (2), and introducing 
dimensionless parameters as follows,  
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Figure 3: Vibration response amplitude 
variation with flow velocity for a support gap 
of (a) 0.3 mm /20° angle, (b) 0.4 mm / 20° 
angle  and (c) 0.66 mm / and 30°  
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Figure 4: Trajectories of the inner rod from 
0.3 mm gap and 10° diffuser angle 
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the nondimensional form of equation of motion may 
be expressed as 

4 2 2 2
1/ 2 2

4 2 22 ( )f
h h h h hU U Q p

x t tx x t
β σ∂ ∂ ∂ ∂ ∂

+ + + + = ⋅ −
∂ ∂ ∂∂ ∂ ∂

   (4) 

where fp  and Q in equation (4) are respectively 
pressure and a constant left by 
nondimensionlization. The pressure fp  in equation 
(4) may be expressed by 

2
f i d kp pp pλ λ= + +     (5) 

Once the perturbation pressure ( fp ) is obtained, 
Galerkin’s method may be utilized. The basic 
equation for the Ritz criterion is possibly separated 
into three parts; before the support, at the support 
and after the support. 
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3.2 Equation of fluid motion 

To derive the fluid equations at the support, 
several assumptions are made as follows: 

(i) the fluid is incompressible, 
(ii) transverse components are neglected, hence 

one dimensional flow, 
(iii) static pressure is recovered at the exit of the 

support. 
(iv) flow perturbation exists only at the support. 

Linearization of the 1-D continuity and momentum 
equations is utilized to obtain the expression of the 
fluctuating velocity and pressure. Then, the three 
fluid force terms in equation (5), inertial, damping 
and stiffness terms, are identified.  

The 1-D continuity and momentum equations for 
an incompressible fluid may be expressed as 

( ) 0
H
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t x
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               (7) 
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The friction term may be expressed as 

2
. .

1
2 f fS f p f C U C Uuρ ρτ τ τ += + =   (9) 

Considering perturbation of every parameters and 
dimensionless parameters in equation (3), the 
following linearlized fluid perturbation equations 
are obtained. 
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                              (10) 
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            (11) 

Applying Bernoulli’s equation at the support 
entrance, where the flow passage is contracted, one 
arrives at the following boundary condition in 
dimensionless form, 

(1 ) 0cin in Kp u ++ =              (12) 

A diffuser efficiency, ,η  may be defined in 
terms of the static pressure recovered in steady flow 
as follows:. 

21
2ex spt sptp p uη ρ− = ⋅                          (13) 

Every term in equation (13) may be considered as 
consisting of static and dynamic components. As in 
the previous treatment, then, equation (13) can be 
linearized. It may be assumed that the dynamic 
diffuser efficiency η  is a function of the area ratio 
or the diffuser angle α  so that 

( , ) ( , )et N tη α η α= +                          (14) 

( , ) ( )
( )

edN
t h t

dg
η α

α
= ⋅                          (15) 

At the diffuser section, G hg α+= , therefore, 

dg dhα=               (16) 

Using a definition similar to Hobson’s (1982) for 
the performance coefficient δ we have  

( ) /
edN

dg Gα
δ = .                         (17) 



The dimensionless diffuser performance coefficient 
in equation (17) does not have the identical 
definition to Hobson’s, but it is closely similar.  

Equation (13) can be divided into steady and 
perturbation terms as follows. 

1
2ex spt spte UP P ρΝ ⋅− =                           (18) 

( ) 21
2ex spt spt spt

h
e sptGU Up p uρ ρδΝ ⋅− = +                 (19) 

The static diffuser efficiency (Ne) can be 
determined by equation (18) while hα  may be 
expressed as h Lα αα= , so equation (16) becomes 

( )dg dh L dα α α= =              (20) 

Substituting equation (20) into equation (17), gives 

/

1 e

G

dN

L dα α
δ = ⋅                            (21) 

In equation (19), pex assumed to be zero. 
Now, the fluid equation (10) and (11) can be 

solved with the two boundary conditions, (12) and 
(19) and pinned-pinned beam eigenfunctions: 

 [ ]2i i

th Sin r x eλλ= ⋅ ⋅ ⋅                         (22) 

The eigenfunction is needed here because 
Galerkin’s method is utilized to solve the equations. 
We have a solution form as follows: 
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where, p(h) means the function of the beam 
vibration amplitude, h, ( , ) ( ) th x t x eλφ= ⋅ , and Lspt  
is the length of the support.  

Now, substituting equation (23) into equation (4), 
multiplying the left side of equation (4) by the 
denominator of equation (23), and then, moving the 
numerator of the right side to the left side, one may 
have a third-order equation of motion.  

3.3 Eigenvalue problem of the third-order 
system 

The basic equation may be written 

[ ] [ ] [ ] [ ]3 2 0M Mx x C x k x+ + + =&&& && &                        (24) 

Let, 1 2 1 3 2, ,y x y y y y= = =& &              (25) 

Then, three ordinary differential equations are 
obtained as follows: 
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=
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&
                           (26-2) 

From equation (26), one may constitute a 3×3 state-
space matrix formulation. 

3.4 Application to experimental cases 

The pressure recovery efficiency of the supports 
is obtained by experiment. As shown in Figure 1, 
the static pressure is not measured at the support, 
but predicted based on the pressure measurement 
just prior to the support, flow area ratio, and then 
friction coefficient predicted as a function of gap 
flow velocity. Some of the recovery factors seem 
not to be realistic. It is believed that friction at the 
support is overestimated or underestimated 
sometime. Accordingly, the estimated pressure 
might be lower or higher than the real value, so that 
the pressure recovery could be evaluated to be high 
or low. Basically, it is found that the smaller the gap 
size and the diffuser angle are, the higher the 
diffuser efficiency. 

When the nodal point of the second beam mode, 
the midpoint of the beam, is in the support 
somewhere at the straight hole section, then, the rod 
loses stability by flutter in the first mode near 0.03 – 
0.15 dimensionless velocity which is equivalent to 3 
– 18 m/s upstream of the glass tube as annular gap 
size increases from 0.3 mm to 2.2 mm. The critical 
flow velocity is proportional to the gap size and the 
diffuser angle. After the first instability, the tube 
becomes unstable again by flutter at the third mode 
just after the first. Figure 6 is an Argand diagram 
for the tube with the gap of 0.3 mm and diffuser 
angle of 10 degree which shows the inner tube loses 
stability consecutively by flutter starting from the 
first mode, then third mode, second mode, and 
finally fourth mode.  

One interesting fact is that, when the nodal point 
of the second mode (midpoint of the rod) is 
positioned just downstream of the diffuser, the tube 
loses its stability consecutively by flutter starting 

Im
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Figure 6: Argand diagram for 0.3 mm 
gap and 10 deg. diffuser angle 
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from the first mode, then third mode, fourth mode, 
and finally second mode, which is shown in Figure 
7. All critical flow velocities are below 0.126 
(equivalent to 14.5 m/s) for 0.3mm gap/10 deg. 
diffuser.  

 

4. CONCLUSION 
Instability of a pinned-pinned flexible rod 

subjected to mostly annular flow and very tight 
annular (leakage) flow over a finite-length gap 
support is studied by theoretical model as well as 
experiment. Contraction and diffuser boundary 
conditions at the gap support are considered.  

In experiments with a 2.2 m long steel tube, 4 cm 
support, and moderate air flow, flutter instability is 
observed for all supports; no matter how large gap 
sizes or diffuser angles are. With annular flow, the 
simply supported beam is known to lose stability by 
divergence at very high flow velocity beyond 
practical engineering application. A small support 
interestingly plays a significant role to change the 
dynamic behavior of the pinned-pinned rod, and 
additionally, to decrease the critical flow velocities 
down to engineering flow velocities. The critical 
flow velocity obtained by the experiment is lower 
than practical flow velocity generally used in power 
generation plants.  

By analytical approach, a theoretical model has 
been developed based on small perturbation 
assumption and 1-D fluid approximation. Numerical 
simulation for the experimental cases yields the 
same results as experiment; the rod loses stability 
by flutter at the first mode, and the critical flow 
velocity is predicted to be reasonably low (2.5 to 
15.5 m/s). The predictions are, however, higher than 
the measured values. That is possibly due to 
inaccurate pressure loss estimation and diffuser 
performance factors.  

It is worth noting that the second instability 
occurs at the third mode, not at the second mode 
which was observed in some of experiments. When 
the diffuser of the support is positioned at the nodal 

point of the second mode, the tube loses stability 
consecutively by flutter. All critical flow velocities 
turn out to be well within the range of practical 
engineering flow velocities.  
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