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ABSTRACT 
A virtual wind tunnel (VWT) based on a vortex 

method has been developed to analyze complex, 
unsteady and vortical flows in relation to problems 
in a wide range of industries. In order to confirm 
applicability of the VWT for the problems of flow 
induced vibrations, it has applied to the simulation 
of flows around a stationary circular cylinder and 
an elastic one, for flow conditions and structural 
configurations reported in the past literature. The 
calculated results are presented and applicability of 
the VWT is discussed making reference to the past 
experiments  

1. INTRODUCTION 
The consideration of vortex-induced vibrations 

(VIV) of slender and circular-cylindrical bodies is 
very important in the design of various structures in 
industries. So far, despite the relatively fundamental 
phenomena of the VIV, only a comparatively small 
amount of knowledge is accumulated about the 
nature of the fluid-structure interaction  

For investigation of response of structure in 
vortex-induced vibration, various experimental 
works have been performed by employing the 
method of free-vibration testing (Feng 1968, King 
1977). And numerical investigation is an alternative 
way to solve the fully coupled problem of VIV of 
bluff bodies. Many researchers have worked to 
apply the techniques of computational fluid 
dynamic (CFD)  to solve the problem of VIV. 
Meneghini and Bearman (1995) and Zhou (1999) 
used the vortex-in-cell (VIC) method to solve the 
problem of 2D incompressible flow past an 
oscillating circular cylinder or an elastic one. 
Evangelinos et al. (2000) used direct numerical 
simulation (DNS) based on spectral elements to 
simulate the 3D flow past rigid and flexible 
cylinders. Willden and Graham (2001) used a quasi-
3D extension of the strip theory to simulate the low 
Reynolds number VIV of a long flexible circular 
cylinder with a low mass ratio and zero damping. It 
is known, however, that still there exist technical 

difficulties associated with numerical analysis of 
flows around moving boundaries, although various 
types of meshing as overlapping, sliding grids and 
Cartesian grids have been examined.  

On the other hand, the vortex methods have been 
developed and applied for analysis of complex, 
unsteady and vortical flows in relation to problems 
in a wide range of industry, because they consist of 
simple algorithm based on physics of flow. 
Nowadays, applicability of the vortex element 
methods has been developed and improved 
dramatically, and it has become encouragingly clear 
that the vortex methods have so much interesting 
features that they provide easy-to-handle and 
completely grid-free Lagrangian calculation of 
unsteady and vortical flows without use of any 
RANS type turbulence models. Details can be found 
in Leonard (1980), Sarpkaya (1989) and Kamemoto 
(1995). 

As well as many finite difference methods, it is a 
crucial point in vortex methods that the number of 
vortex elements should be increased when higher 
resolution of turbulence structures is required, and 
then the computational time increases rapidly.  In 
order to reduce the operation count of evaluating 
the velocity at each particle through a Biot-Savart 
law, fast N-body solvers, by which the operation 
count is reduced from O(N2) to O(N log N), have 
been proposed by Greengard et al. (1987). On the 
other hand, in order to reduce the computational 
load in calculation of turbulence structures, Fukuda 
and Kamemoto (2005) proposed an effective 
redistribution model of vortex elements with 
consideration of convective motion and viscous 
diffusion in a three dimensional core-spreading 
model. 

In the present study, in order to examine the 
applicability of the virtual wind tunnel based on the 
vortex method developed to extend as a tool for a 
grid-free Lagrangian large eddy simulation by the 
present authors to fluid dynamics in VIV problem, 
numerical simulation of three dimensional, complex 
and unsteady flows around an elastic circular 
cylinder were performed. From the numerical 



analyses, vortical flow characteristics around the 
elastic circular cylinder have been investigated and 
numerical results were compared with experimental 
ones. 

2. NUMERICAL SCHEMES 

2.1 Vortex methods 

The governing equations of viscous and 
incompressible flow are described by the vorticity 
transport equation and the pressure Poisson 
equation which can be derived by taking the 
rotation and the divergence of Navier-Stokes 
equations, respectively. 
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As explained by Wu and Thompson (1973), the 

Biot-Savart law can be derived from the definition 
equation of vorticity as follows: 
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Here, subscript “0” denotes variable, 
differentiation, and integration at a location 0r

r , and 
0n
r  denotes the normal unit vector at a point on a 
boundary surface S.  And G is the fundamental 
solution of the scalar Laplace equation with the 
delta function ( )0rr

rr
−δ  in the right hand side, which 

is written for a three-dimensional field as 
041 rrG
rr

−= π . 
In equation (4), the inner product 00 un

rr
⋅  and the 

outer product 00 un
rr

×  stand for normal velocity 
component and tangential velocity vector on the 
boundary surface.  They correspond to the source 
distribution on the surface and the vortex 
distribution that has the rotating axis in parallel to 
the surface. In this study, a boundary surface is 
represented by the panel method.  The source and 
vortex corresponding to the second and third terms 
of right hand side of equation (4) are distributed on 
the boundary surface.  The strengths of source and 
vortex are obtained by using the following two 
conditions; zero normal component of relative 
velocity to the boundary surface ( ) 0=⋅− nvu w

rrr  and 
the relation of the conservation of the vortex 
strength, respectively.  wvr  is a moving velocity of a 
boundary.  The pressure in the field is obtained 
from the integration equation formulated by 
Uhlman (1992), instead of the finite difference 

calculation of equation (2) as follows: 
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Here, β =1 in the flow field and β =1/2 on the 
boundary S.  G is the fundamental solution.  H is the 
Bernoulli function defined as 22upH

r
+= ρ . 

The value of H on the boundary surface is 
calculated from equation (5) by using the panel 
method.  After the pressure distribution around the 
boundary surface is calculated from equation (5), 
integration of the pressure acting on the body 
surface yields the force acting on the body. 

One of the most important schemes in the vortex 
methods is how to represent the distribution of 
vorticity in the proximity of the body surface, 
taking account of viscous diffusion and convection 
of vorticity under the non-slip condition on the 
surface. In the present method, a thin vorticity layer 
is considered along the solid surface, and discrete 
vortex elements are introduced into the surrounding 
flow field considering the diffusion and convection 
of vorticity from discrete elements of the thin 
vorticity layer.  The details of treatments have been 
explained in the paper by Ojima and Kamemoto 
(2000).  In this paper, they validated the basic 
technique of the present method by comparisons 
with experimental results of the flows past a sphere. 

The discrete vortex element is modeled by a 
vortex blob which has a spherical structure with a 
radially symmetric vorticity distribution proposed 
by Winkelmans & Leonard (1988).  The motion of 
the discrete vortex elements is represented by 
Lagrangian form of a simple differential equation 

udtrd
rr

= .  Then, trajectory of a discrete vortex 
element over a time step is approximately computed 
from the Adams-Bashforth method.  On the other 
hand, the evolution of vorticity is calculated by 
equation (1) with the three-dimensional core 
spreading method proposed by Nakanishi & 
Kamemoto (1992).  It should be noted here that in 
order to keep higher accuracy in expression of a 
local vorticity distribution, a couple of additional 
schemes of re-distribution of vortex blobs are 
introduced in the present advanced vortex method. 
When the vortex core of a blob becomes larger than 
a representative scale of the local flow passage, the 
vortex blob is divided into a couple of smaller blobs. 
On the other hand, if the rate of three-dimensional 
elongation becomes large to some extent, the vortex 
blob is divided into plural blobs to approximate the 
elongated vorticity distribution much more properly. 

2.2 Structural dynamics 

The procedure to analyze dynamic behavior of 
structures is based on a beam element representation 



using a consistent mass-matrix formulation (i.e., no 
mass lumping).  The resulting equations of motion 
for each structure are a set of second-order ordinary 
differential equations (ODEs) of the following 
form: 
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Where [M] is the mass matrix, [C] is the damping 
matrix, [K] is the stiffness matrix, q is the vector 
displacements, and F is the forcing vector.  In the 
three dimensional analysis, the open source finite-
element solver CalculiX developed by Dhondt 
(1998-2004) was used to obtain the structural 
solutions for the isolated cylinder. The cylinder was 
assumed to be solid in this study. 

Fluid-structure coupling 
Within a physical time step, the structural motion 

and the flow field are unknown and are solved 
iteratively between the fluid and structural systems 
in a fully couple manner. The following is the 
procedure: 

(1) The variables at new time step n+1 of the 
flow and structural equations are initially set to the 
values of time step n. 

(2) Calculate the pressure and viscous stress 
exerting on the solid boundary of the body. 

(3) Determine the position of the moving body 
subject to the fluid forces by solving the structural 
equations. 

(4) Re-generate the surface mesh and calculate 
the grid velocity at each node point according to the 
updated structural position. 

(5) Calculate the flow field by solving the 
equations of flow motion for the updated mesh and 
structural position. 

(6) Check the maximum residuals for both 
solutions of the flow and the structural equations. 

If the maximum residuals are greater than the 
prescribed convergence criteria, go back to step (2) 
and proceed to the next pseudo time step m+1, 
otherwise the flow field and the movement of the 
moving body are determined and go back to step (1) 
to start the next new physical time step n+1. 

3. APPLICATION TO FLOW-INDUCED 
VIBRATIONS 

3.1 Added-mass effect 

In order to confirm the effect of the added mass, 
the simulations of two-dimensional free oscillating 
circular cylinder in stationary water was performed.   

The cylinder mass ratio m*=4m/ρfπD2L=7.0, 
where m is the mass per unit length of the cylinder 
length, and ρf is the density of fluid.  The damping 
ratio was set as ζ=c/(4mκ)1/2=0.0015.  Here, c and κ 
are the structural damping coefficient and the spring 

constant, respectively.  Other calculation conditions 
were set as follows; computational time step 
∆t=0.025 sec and kinematic viscosity of fluid 
ν=1.1×106 m2/s.  As special initial condition, we 
supposed that the initial load Fx=-κx0 was acting on 
the cylinder toward x direction.  Here, initial 
displacement was set as x0/D=0.5. 

Figure 2 shows an instantaneous flow pattern 
represented by vortex elements.  Figure 3 shows 
time history of the displacement of the cylinder.  It 
is confirmed that the amplitude of displacement of 
the cylinder is decaying with elapsed time.  Then, 
the frequency of x directional displacement of the 
cylinder was fv=0.4014[Hz].  It can be confirmed 
that the added mass effect was correctly considered 
in this calculation, because the natural frequency of 
the cylinder considering the added-mass is fn'= 
[κ/(m+mA)]1/2/2π=0.3996[Hz] as almost the same of 
calculation result.  Here, the added-mass, mA, is 
given by mA =CAm', where m' is the displaced fluid 
mass m'=ρfπD2L/4 and CA is the potential added-
mass coefficient (CA=1.0 for a circular cylinder). 

 
Figure 2: Instantaneous flow pattern around 
oscillating cylinder. 
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Figure 3: Time histories of cylinder displacement. 

3.2 Three-dimensional flexible circular cylinder 

In order to confirm the applicability of our code, 
flow simulation around a stationary circular 
cylinder and flexible cantilever circular cylinder 
were performed, and the calculation results were 
compared with experimental ones.  

3.2.1 Stationary circular cylinder 
As the calculation model, the circular cylinder 

model used to the experimental investigation by 
Jauvtis and Williamson (2004) was employed in 
this study.  Figure 4 shows a diagram of the test 
equipment.  The circular cylinder had an aspect 
ratio (length/diameter) of L/D=10.0.  Reynolds 
number and time interval were set as Re=U0D/ν 
=2.89×103 and ∆t*=∆tU0/D=0.1, respectively.  
Where U0 is the free-stream flow speed, and ν is the 
kinematic viscosity.  Here, it should be noted that 
the upper surface was assumed to be the slip wall 



and the mirror condition was imposed in this 
calculation. 

L=0.381[m]

D=0.0381[m]

U0

y

x

z

Z=0:mirror condition

L=0.381[m]

D=0.0381[m]

U0

y

x

z

Z=0:mirror condition

 
Figure 4: Coordinate system for calculation model. 

 
(a) Top view 

 
(b) Side view 

Figure 5: Instantaneous flow pattern around 
stationary circular cylinder. 
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Figure 6: Time variation of fluid force acting on the 
stationary circular cylinder.  
 

Figure 5 shows a side view and a top view of an 
instantaneous flow pattern around the stationary 
circular cylinder at t*=tU0/D=336.0 expressed by 
relative velocity vectors at positions of vortex 
elements.  The separated shearlayers shed from the 
circular cylinder form the structure of Karman 
vortex street behind the cylinder, and oblique vortex 
structure, which induced by the free end of the 
cylinder, were formed behind the cylinder.  It is 
guessed that the present results are the similar 
phenomena observed from the experimental work 
by Williamson (1989). 

Then, the time variation of each components of 
fluid force acting on the circular cylinder was 
shown in figure 6.  The time averaged drag 
coefficient at 150<t*<400 was DLUFC xD

2
02 ρ=  

=1.07, and Strouhal number evaluated from the 
fluctuation of lift coefficient CL became 
St=fvD/U0=0.20 in the present calculation.  These 
results are reasonably corresponding compared with 
past experiment results. 

3.2.2 Flexible circular cylinder 
The cylinder mass ratio m*=4m/ρfπD2L=2.6, 

where m is the mass per unit length of the cylinder 
length, and ρf is the density of fluid.  Here, it should 
be noted that the damping ratio and gravity were not 
considered in this calculation.  Reynolds numbers 
and dimensionless dynamic parameters in the 
present calculations were chosen to match those in 
the experimental set-up by Jauvtis and Williamson 
(2004) as shown in Table 2.  A reference Reynolds 
number is Re=U0D/ν =2.93×103 at a reduced 
velocity Vr=U0/fnD=5.0, where U0 is the average 
free-stream flow speed and fn is the free-vibration 
natural frequency in fluid. 

It should be noted that, even with this degree of 
matching, cylinder-end boundary conditions differ 
between the experiments and the present 
calculations, since flexible cantilever circular 
cylinder with one end free and another end fixed 
was employed in this calculations. 

 
Table 2: Calculation conditions 

Structure  
Density of structure: ρs 2.595×103 [kg/m3] 
Young's modulus: E 4.265×105 [N/m2] 
Pisson's ratio: σ 0.34 
Natural frequency: fn 0.406 [Hz] 
Fluid  
Density of fluid: ρf 9.982×102 [kg/m3] 
Kinematic viscousity: ν 1.004×10-6 [m2/s] 
 
The three-dimensional simulations were carried 

out for reduced velocities chosen to place near the 
highest expected amplitude on the upper and lower 
response branches (Vr=3.94, 4.93, 5.91, 7.18, 8.53).   

We examined the topology of the vortical wake 
structure formed behind the flexible cylinder 
oscillating at the case of Vr=5.91.  Figure 7 shows 
the instantaneous flow pattern around the cylinder 
at t*=336.0 expressed by relative velocity vectors at 
positions of vortex elements.  As shown in Fig. 7, it 
can be seen vortex dislocations at the case of 
Vr=5.91 are associated with the difference of modes 
between the bottom and the tip of the cylinder. The 
present result is very similar to the phenomenon of 
vortex formation mode which comprises co-rotating 
vortex pairs for the pivoted circular cylinder by 



Flemming and Williamson (2005). 

 
(a) Top view 

 
(b) Side view 

Figure 7: Instantaneous flow pattern around the 
circular cylinder at reduced velocity Vr=5.91. 
 

Figures 8 and 9 are shown in the time variation of 
each components of fluid force acting on the 
circular cylinder and the displacement of the tip of 
cylinder, respectively.  It is confirmed that fluid 
forces acting on the cylinder and the displacement 
of the cylinder tip are fluctuating according to the 
variation of vortex wake structure formed behind 
the cylinder.  
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Figure 8: Time histories of fluid force coefficient. 
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Figure 9: Time histories of displacement of the tip of 
cylinder. 

The amplitude response of the cylinder tip is 
shown in Fig. 10 and the frequency response of lift 
force is shown in Fig. 11. Here, the normalized 
amplitude and frequency are defined as 
A(x,y)*=(x,y)/D, f(x,y)*= f(x,y)/fn , respectively.  The 
response amplitudes obtained by present 
calculations were similar to the experimental results 
for the case of vibration in two degree freedom of 

uniform amplitude to the spanwise direction 
(Jauvtis and Williamson (2004)).  However, these 
amplitudes obtained by present calculations are 
somewhat smaller than their experimental results.  It 
is thought likely to be a consequence of the 
differences in type of the spanwise amplitude 
distribution.   

Transverse frequencies fy*, which obtained from 
sectional lift force acting on the section near the tip 
(z/L=0.9) and mid-span (z/L=0.5) of the cylinder, 
are presented in figure 11, and we have omitted the 
streamwise frequency fx*, since it is precisely twice 
of fy*.  It seems that the lock-in phenomena are 
caused near the tip of the cylinder (z/L=0.9), since 
the frequency of vortex shedding is almost equal to 
that of oscillation as shown in Fig. 11.  However, 
similar phenomena are not seen in the mid-span of 
the cylinder (z/L=0.5).  It is thought that these 
phenomena depend upon the type of the spanwise 
amplitude distribution. 
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Figure 10: Amplitude response of the cylinder tip 
for the reduced velocity. 
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Figure 11: Frequency Response of lift force for the 
reduced velocity. 
 

4. CONCLUSION 
A fully coupled methodology is developed for 

calculation of the flow-structure interaction 
problems with moving and deforming mesh systems.  
And a virtual wind tunnel using a vortex element 
method has been constructed. 

In order to confirm the applicability of our code, 
flow simulation around a stationary circular 



cylinder and flexible cantilever circular cylinder 
were performed.  The response amplitudes obtained 
by present calculations were similar to the 
experimental results, though these amplitudes 
obtained by present calculations were somewhat 
smaller than the experimental results.  It was 
confirmed that the lock-in phenomena are caused 
near the tip of the cylinder  

From the results of the present study, it is  
concluded that the virtual wind tunnel based on the 
vortex method, is available and useful for research 
of flow induced vibrations. 
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