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ABSTRACT 
A developed time-independent finite difference 

method is used to solve for the sloshing waves in a 
three-dimensional tank with square basin. The 3D 
equations of motion of fluid are derived in moving 
coordinate system and complete six degrees of 
freedom of motion are included 
(surge/sway/heave/pitch/roll/yaw). Just for the 
demonstrate purpose, only the coupling effect of 
surge and sway motions are considered in the paper. 
The numerical scheme is validated by proper 
benchmark studies. Five types of sloshing waves 
were generated when the tank is excited by various 
excitation frequencies. The spectral analyses were 
made to identify the resonant frequencies of each 
type of wave. The clear evidence shows the solid 
correlation between the occurrence of the sloshing 
wave types and specific resonant modes.  

1. INTRODUCTION 
Free surface sloshing in a moving container is 

associated with various engineering problems, such 
as tankers on highways, liquid oscillations in large 
storage tanks caused by earthquakes, sloshing of 
liquid cargo in ocean-going vessels, and the motion 
of liquid fuel in aircraft and spacecraft. It is known 
that partially filled tanks are prone to violent 
sloshing under certain conditions, especially when 
near resonant excitation occurs. The large amplitude 
movement of the liquid can create high impact 
pressures on the tank walls, which in turn can cause 
structural damage and may even create moments 
that affect the stability of the vehicle which carries 
the container. 

In the mid of 1970, Abramson (1966) provides a 
rather comprehensive review and discussion of 
analytic and experimental studies of liquid sloshing 
which apply in aerospace industry. The potential 
formulation of the problem is often used in studying 
sloshing such as Waterhouse (1994) and Ockendon 
et al. (1996) among many others. Most recently 
Faltinsen et al. (2003, 2005 and 2006) extended 
their asymptotic modal system to model nonlinear 

sloshing in a 3D rectangular tank. 
Besides the potential flow approaches, many 

numerical studies (computational fluid dynamics, 
CFD, simulation) of the problems with primitive 
variables were made, particularly for the fully 
nonlinear effects of the sloshing waves on free 
surface. The reported techniques handling wavy 
free surface include VOF, SOLA, SURF and also 
theσ -transformation technique to stretch the grid 
from the bed to surface. Most recently, Chen and 
Nokes (2005) developed a time-independent finite 
difference method to study viscous fluid sloshing in 
2D rectangular tanks, the time varied moving 
boundary was mapped onto a time-independent 
domain through proper transformation functions 
and the coupled surge-pitch-heave motions are 
included. 

Most reported studies were the tanks excited by 
limited exciting directions and with a fixed 
excitation frequency throughout the excitation. In 
reality, as the tank is excited by earthquake or 
assaulting waves, the excited directions are actually 
multi-degree of freedoms and the excitation 
frequency varies with time. In the three-dimensional 
model, the developed time-independent finite 
difference method (Chen and Nokes 2005) is 
extended to incorporate the incompressible and 
inviscid Navier-Stokes equations, fully nonlinear 
kinematic and dynamic free surface conditions in 
the analysis of the seismic response of sloshing 
fluid in a rectangular tank with a square basin. The 
main study of this paper simulates a 3-D tank 
undergoing only surge-sway motions with varying 
excited directions and only the transient 
phenomenon is recorded and studied. The tank 
excited in horizontal ground motion (coupled surge-
sway motion) with various excitation 
angle θ ( θ indicates the direction of horizontal 
ground motion) resulted in five kinds of sloshing 
waves (single-directional, diagonal, square-like, 
swirling and irregular waves) and the FFT (Fast 
Fourier Transform) spectral analysis was used to 
identify the dominant frequencies of each type of 
waves. The results show that the correlation 
between the occurrence of the sloshing wave types 
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and specific resonant modes is inseparable. 

2. Mathematical Formulation 
A fully non-linear model of inviscid 3-D waves 

in a numerical wave tank was developed. As shown 
in Fig 1, a rigid tank with breadth L, width B and 
still water depth d0 . As the coordinate system is 
chosen to move with the tank motions (including 
surge, sway, heave, yaw, roll and pitch motions, see 
Fig. 1), the momentum equations can be derived 
and written as  
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where u, v and w are velocity components in x, y 
and z directions, cx 、 cy and  are the acceleration 
components of tank in x, y and z directions ; (

cz
α 、

β ’ γ ) and ( α , β  , γ ) are the corresponding 
angular velocities and accelerations with respect to 
x, y and z –axes, p is the pressure, ρ is the fluid 
density and g the acceleration of gravity. Taking 
partial differentiation of Eqs.( 1), (2) and (3) with 
respect to x, y and z respectively, and summing the 
results, one can obtain the following pressure wave 
equation which is made to solve for the pressure. 
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The continuity equation for incompressible flow is   
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and the dynamic free surface condition is p = 0 and 
the boundary condition at the solid walls must 
satisfied momentum equations. Instead of using 
boundary fitted coordinate (BFC) system, we used 
simple mapping functions to remove the time-varied 
boundary of the fluid domain. The irregular tank 
walls and tank bottom can be mapped onto a cubic 
one by the proper coordinate transformations as 
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where the instantaneous water surface, h(x,z,t), is 
a single-valued function measured from tank bottom, 
d(x,z) represents the vertical distance between still 
water surface and tank bottom, b and  are 
horizontal distance from the x-axis to the west and 
east walls respectively, and b  and are horizontal 
distance from the z-axis to the north and south walls 
respectively, (see Fig.1).The coordinates (x*, z*) 
can be further transformed so that the layer near the 
free surface, tank bottom and tank wall will be 
stretched by 
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The constants κ2 and λ2 control the mesh sizes 
near free surface and tank bottom. Similarly, the 
constants κ 1,3 and λ 1,3 map irregular finite 
difference mesh sizes near tank wall to the regular 
ones in the computational domain(X,Y,Z). Thus, the 
geometry of the flow field and the meshes in the 
computational domain (X-Y-Z system) become time-
independent throughout the computational analysis. 

Heavy 

The kinematic free surface boundary condition is 

 
Figure 1: Definition Sketch. 

3. Finite Difference Method  
The numerical method used in this study is based 

on a finite difference method. There are many finite 
difference and volume method for evaluating free 
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surface. The most famous schemes are SURF, MAC 
and VOF methods and those methods need 
complicate computer programming in treating the 
time varied free surface boundary and updating 
computational meshes. Alternately, in the present 
study, the time-varied free surface boundary is 
transformed to a time-independent free surface in 
the x*-y*-z* domain and no boundary tracing is 
needed during the calculation. A single value height 
function is assumed and is evaluated by solving the 
kinematic free surface condition. In a three-
dimensional analysis, the fluid flow is solved in a 
cubic mesh network of the transformed domain. The 
staggered grid system is used in the analysis (see 
Fig 2). The Crank-Nicholson iteration scheme and 
Gauss-Seidel Point successive over-relaxation 
iteration procedures are used to calculate velocity 
and pressure, respectively. The detailed iteration 
procedure is similar that reported in Chen and 
Roger (2005) and is omitted in the manuscript.  

 

 
Figure 2: The staggered grid system. 

4. Result and Discussion 
In the present study, a rectangular tank with ratio 

breadth / width = L / B = 1, still water depth / 
breadth = d0 /L =0.25 are used in most of the 
simulations. Although the surge, sway, heave, pitch, 
roll, and yaw motions are considered in this study, 
the main focus of this paper is a tank under coupled 
surge-sway motion. The ground acceleration of 
surge, and sway motion are given as, and       
respectively, where, X0and Z0 are the maximum 
excited amplitudes; and 

      

zω  are the corresponding 
excited frequency with respect to surge and sway 
motion. 

4.1 Verification 

In order to validate the accuracy of numerical 
simulation, the results obtained from the present 
numerical model are compared with those reported 
in the literature for the benchmark tests. The present 
results for the tank under surge motion agree greatly 
with Faltinsen’s (2005) theoretical and experimental 
results as shown in Fig.3. The results for diagonal 
excitation produced by Kim (2001) also show great 

agreement with the present study as shown in Fig.4. 
Thus, the present numerical model can be verified 
by the benchmark tests mentioned above.  
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Figure 3: The wave history on tank's walls under   
surge motion, the ratio d0 (still water depth) / L and 
d0 /B=0.5. Tank's displacement a0/L =0.0078, 

11.037xω ω= , 1ω : the first natural frequency of the 
tank. 
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Figure 4: The wave history on tank's corner under 
Surge- Sway (diagonal) motion, the ratio d0 / L and 
d0 / B =0.25, tank's displacement a0 / L=0.0093, 

199.0 ωωω == zx . 

4.2 Sloshing waves in tanks 

Five types of sloshing waves are introduced 
simply in this section. The single-directional waves 
which means waves slosh in the direction as well as 
the tank motion. The phenomenon of square-like 
waves corresponds to waves traveling primarily on 
two opposite sides of the tank. The diagonal wave 
sloshing in the tank was firstly investigated by 
Miles (1994), and the wave is basically sloshing in 
diagonal direction of the tank. As the waves slosh 
irregularly inside the tank, are termed irregular or 
chaotic waves. When waves move along the tank 
walls in a clockwise or counterclockwise direction, 
they are referred to as “swirling” waves. The 
swirling waves only appear as the tank under 
resonant forcing. 

4.3 Spectral analysis 

In this section, the spectral analyses are made to 
obtain the dominant resonance frequencies of each 



type of the sloshing waves mentioned section 4.2. It 
is well known that the resonant sloshing resulted 
from the first fundamental frequency is called 
primary resonance of the tank. If the tank is excited 
with a frequency away from the first fundamental 
mode of the tank, the secondary resonance also can 
be triggered due to the effects of the other natural 
modes of the tank system. 

Fig. 5 presents the spectral analyses for each type 
of sloshing waves, and the plots in the box at the 
right-upper corner are the corresponding wave 
histories. For excited angles = 5o and 45o, the 
excitation frequency = 0.4 1ω , the single direction 
and diagonal wave occurs respectively. Two 
resonant peaks are identified in their spectral 
analyses, one is corresponding to the first 
fundamental frequency and the other is to the 
excitation frequency and the latter is the dominant 
one. For excited angles = 5o, and excitation 
frequency increases to 1.5 1ω , the square-like wave 
presents and the dominant resonant frequency is the 
first fundamental frequency and the other resonant 
frequency is also the excitation frequency. For the 
same excited angle but the excitation frequency 
nears the first fundamental frequency, the secondary 
resonance, in addition to the primary resonance, 
occurs and is corresponding to ω2,2. And this 
secondary resonance is likely related to the 
occurrence of the swirling waves since the spectral 
analyses of the other cases of swirling waves all 
present a resonant peak corresponding to ω2,2.  

As the excitation frequency further increase to 
2.3 ω1, the irregular wave occurs. Although the 
dominant resonant frequency is the first 
fundamental mode, several secondary resonances 
present and they are corresponding to modes ω3,0 
and ω5,0 and they are also likely related to the 
occurrence of irregular waves. The said 
phenomenon may be clarified by the aid of the 
nature of the mode shape of the resonant modes as 
stated in the next section. 

4.4 Sloshing waves and resonant modes 

The natural modes and modal system obtained by 
Faltisen et al. suggested that two subclasses of wave 
patterns exist. The first one consists of two-
dimensional Stokes wave pattern, and the 
corresponding waves are called as planar waves 
(Miles, 1994),  
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The second subclass is the three dimensional 

wave pattern given by the multiple of two Stokes 
waves 
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Faltinsen also suggested the mixed modes and the 
combination of the two Stokes modes to represent 
three-dimensional wave patterns. As stated in the 
previous section, the major resonant frequency can 
be identified from the spectral analysis of each type 
of sloshing wave. For diagonal wave, two resonant 
peaks occur and they are corresponding to the first 
natural mode of the system and excitation frequency. 
The diagonal wave is generated by a tank under 
couple surge and sway motions with excited angle = 
45o, and the mode of ω0,1 and ω1,0, therefore, might 
provide equal effect on sloshing wave. Fig.6 depicts 
the mode shape of combining ω0,1 and ω1,0, and the 
resulting mode shape apparently likes a diagonal 
wave sloshing in the tank. Again under a diagonal 
forcing with the excitation frequency = 1.5 ω1, the 
sloshing wave pattern changes to square-like wave. 
Fig. 7 depicts the square like wave patterns and the 
resonant mode shape. The spectral analysis of a 
square like wave presents two peaks, and they are 
also corresponding to the first fundamental 
frequency and excitation frequency. The 
combination of mode of ω1,0 and ω0,1 with 0.5 
weight is depicted in Fig. 7 and the terraced planes 
at the diagonal corners are seen in the figure. Fig. 7 
demonstrates a clear evidence of the solid 
correlation between sloshing surface patterns and 
resonant modes. 

 
As the excitation frequency nears the first 

fundamental mode, the sloshing wave becomes 
swirling and the spectral analysis indicates a 
occurrence of small resonant peak of ω2,2. The 
corresponding mode shape can be obtained from the 
multiple of Stokes modes of ω2,0 and ω0,2. Fig.8 
shows the mode shape of ω2,2 and the subplots of 
the figure are the surface contour of the swirling 
wave patterns. The relative surface peak might 
occur at four corners of the tank, mid point of four 
walls and the center of the tank surface. The surface 
contour plots, once again, demonstrate the close 
relationship between resonant mode and the 
sloshing wave patterns. 

 
The spectral analysis of irregular waves indicates 

the resonant peaks of ω1,0, ω3,0, and ω5,0, and the 
mode shape of the combination of three resonant 
modes and the corresponding surface wave contour 
of are depicted in Fig. 9. As shown in the figure, 
similar evidence of correlation between resonant 
modes and surface wave patterns also can be found 
in the case of irregular waves.  
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Figure 6: Diagonal wave patterns and resonance 
mode.  

 
 

(c) 

 

(d) 

Figure 7: Square like waves patterns and 
resonance mode.  
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Figure 5: The spectral analysis of  

 

(a) Diagonal wave ( 145 , 0.4oθ ω ω= = ),  

(b) Single direction wave ( 15 , 0.4oθ ω ω= =
o
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(c) Square-like wave ( 15 , 1.5θ ω ω= =
o

), 

 

(d) Swirling wave and ( 15 , 0.97θ ω ω= =
o

) 

(e) Irregular wave ( 15 , 2.3θ ω ω= = ) 
 

 



 
Figure 8: Swirling wave patterns and resonance 

mode.  

 
Figure 9: Irregular wave patterns and resonance 

mode 

5. CONCLUSION 
The developed time-independent finite difference 

method is extended to solve the incompressible and 
inviscid Navier-Stokes equations, fully nonlinear 
kinematic and dynamic free surface conditions in a 
rectangular tank with a square basin. The main 
study of this research simulates a 3-D tank 
undergoing different combination of motions with 
varying vibrating directions. The comparison of the 
results obtained by present simulation and those of 
reported data shows the acceptance and accuracy of 
the proposed numerical scheme. The following 
conclusions are reached: 

 
1. Five types of sloshing waves are observed and 

they are quite related to the excitation frequency. 
As the sloshing frequency closes to the first 
fundamental mode, the swirling wave patterns 
occur. The other wave types, square-like and 
irregular wave patterns were also observed in 
the literatures when the tank is under near 
resonant excitation. In the present study, the 
square-like wave and irregular wave also can be 
triggered when the excitation frequency is far 
away from the first fundamental frequency with 
excited angle = 5o. Since the swirling wave is 
generated by the near resonant excitation, the 
swirling wave displacements at the corners are 
the largest among those of all types of sloshing 
waves. 

 
2. The spectral analyses of five types of sloshing 

waves were made and the resonant peaks are 
corresponding to the primary mode and 
excitation frequency in the types of the diagonal, 

single direction and square like waves. For 
swirling wave, a secondary resonance of mode 
ω2,2  occurs in addition to the primary resonance. 
For irregular waves, the resonant peaks of 
primary mode and excitation frequency do exist, 
however, the secondary resonances of odd 
modes ω3,0 and ω5,0 also present. 

 
 
3. The shape of the resonant modes and the 

surface contour of the wave pattern demonstrate 
a clear evidence of the solid correlation between 
the occurrence of each type of the sloshing 
waves and corresponding resonant modes. 
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