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ABSTRACT 

When an acoustic resonance excites a structural 
resonance the possibility exists for large and 
potentially damaging structural stresses. The 
prediction of stresses under these circumstances is 
complicated by the fact that the level of stress is 
sensitive to the precise tuning of the system. 
Consequently, a typical computer based simulation 
will probably miss the worst case while the built 
system may suffer failure because, by chance, it is 
tuned to the worst case. 

The amplitudes of vibration for the worst 
possible case of an acoustic-structural system are 
investigated and formulated as simple equations. 
These equations use parameters that may be 
determined by considering the acoustic and 
structural characteristics of the system in separate 
simulations. This avoids the need to undertake 
detailed simulations of the fully coupled system. 

1. INTRODUCTION 

The combination of an acoustic and structural 
resonance can often be problematic. A particularly 
hazardous case is that of gas pipework where large 
noise levels can induce significant pipe vibration 
resulting in fatigue failures and an escape of 
flammable gas. 

In general, it is necessary to use computer based 
simulation methods, for example the finite element 
method, when investigating an acoustic-structural 
system. The standard approach is to make separate 
models for the acoustic and structural systems. This 
is usually necessary because a fully coupled 
acoustic-structural system is too complex for current 
computer software. This difficulty will probably 
continue into the future even with improved 
computer power because the acoustic system is often 
physically large compared to the small components 
of the structural system which are vulnerable to 
vibration. For example, pipeline acoustics may 
depend on hundreds of meters of pipe while the 
component set into vibration may be a few metres of 
side branch pipework.  

The output from the acoustic analysis of the 
systems is a set of acoustic natural frequencies and 
modes shapes that assumes the structural system is 
rigid. The output from the structural system is a set 
of structural natural frequencies and mode shapes 
which assumes that the structure is flexible but that 
no fluid is present. The problem following such 
analyses is to predict the response of the combined 
acoustic-structural system.  

As will be shown a coupled acoustic-structural 
system can have a wide range of resonant vibration 
amplitudes depending on the precise nature of the 
tuning between the two systems. Consequently an 
assessment procedure must not only work out the 
consequences of coupling the acoustic and structural 
systems but must also consider the effect of various 
tuning options that cover all practical possibilities. 

 
Computer simulations are always inaccurate 

because, (i) the extent of the system is not modelled 
due to difficulties in the representation of boundary 
conditions; (ii) the system may be constructed 
differentially to the model, (iii) the system may be 
modified during its life or the excitation may change 
and finally (iv) all the details of the system are not 
fully included in the model. An approach is therefore 
needed which enables the worst possible 
circumstances to be determined even when basic 
parameters such as mass, stiffness or boundary 
conditions are not modelled accurately. 

The solution to this modelling problem is to 
assume from the outset that the most unfavourable 
conditions will prevail and that not only will the 
system be excited in resonance but that it will be 
tuned to the worst possible resonant condition. 

The objective of this work is thus to find the 
conditions that lead to the largest possible resonance 
amplitudes and then to find an equation for this 
amplitude in terms of basic structural parameters 
that can be deduced from elementary modelling. 



 

2. PROBLEM FORMULATION 

It is assumed that acoustic and structural 
modelling has been undertaken and that natural 
frequencies and mode shapes have been calculated 
separately for each system. If the natural frequencies 
of both systems are examined there will be 
immediate cause for concern when one acoustic 
natural frequency is similar to a structural natural 
frequency. This is the starting point for further 
analysis which must determine if the acoustic and 
structural natural frequencies will couple to produce 
high stress. 

 
The approach taken here is to extract one acoustic 

and one structural mode and to examine the 
combined response of the coupled system. As an 
example of this process the configuration in Figure 1 
is analysed. This configuration consists of an 
acoustic cavity of length L and cross-sectional area S 
coupled to a piston-like mass-spring-damper system 
at the right-hand end and driven by an acoustic 
source, with a harmonic volume velocity amplitude 
of Q, at the left-hand end Although this appears as a 
very specific example it may be generalised to 
include any case of acoustic structure interaction. 
One key advantage of this problem is that a closed 
form solution may be established. 

 
Starting with the acoustic equations it is 

straightforward to model the pressure within the 
cavity by assuming plane waves and modelling the 
piston as a second source at the right hand end. This 
leads to an expression for the pressure, P, at the 
piston of 
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where ρ is the fluid density, c the speed of sound, S 
the cross-sectional area, Q the volume velocity of the 
source on the left, Qp the volume velocity of the 
source on the right that models the piston motion, ω  
the frequency of oscillation in radians per second, L 
the length of the cavity and α the ratio of the cross-
sectional area of the semi-infinite pipe on the left to 
the area of the cross-section of the main cavity. This 
is a closed form solution but may be turned into a 
modal solution by finding the roots of the 
denominator and the residue of the function at these 
roots. The roots are given by  
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where ωn is the nth natural frequency. The small 
pipe, of infinite extent going to the left in Figure 1 
acts as a damper since waves propagate away from 
the cavity and are not returned. This damping may 
be expressed in more usual terms, as an acoustic 
damping ratio, by writing 
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The second, approximate, form is found by 
expanding the log term in a Taylor series. The 
approximate form is within 3% for acoustic damping 
ratios up to 0.1 

The pressure at the piston for just one mode is 
given by  
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Here the denominator has the familiar form of a 
resonant pole with a natural frequency 

Lcn /πω = . It should be stressed that the natural 
frequencies and damping ratios are those for the 
uncoupled acoustic system. In a finite element 
analysis they would be found directly in the modal 
form. 

 
The mechanical system is modelled in the usual 

form by  
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where σ is the force in the spring, F an externally 
applied force, P the pressure from the acoustic 
loading (as given by Equation 1), ωs the structural 
natural frequency in the absence of acoustic loading 
and ζs the structural damping ratio. Here the force in 
the spring has been determined. This reflects the 
usual acoustic-structural problem where stresses 
must be calculated. As with the acoustic system a 
simplification may be introduced by expanding about 
the resonance frequency and hence reducing the 
order of the expression. This gives the force in the 
spring as 
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In a more general analysis this equation would 
have been obtained by extracting one of the vibration 
modes from a finite element analysis of the structural 
system in which the fluid is absent. The relevant 
mode would have been one which has a similar 
natural frequency to an acoustic frequency.  

 
Finally the two equations describing the acoustic 

and structural systems may be combined to give 
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where the parameter β  has been introduced to 
collect various terms of the original equations. The 
parameter β is given by   
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where k is the stiffness of the spring connected to the 
piston. The parameter β is the coupling parameter 
and is equal to half the ratio of the compressibility of 
the fluid to the stiffness of the structural spring. This 
term also includes the area of the piston that in a 
more general analysis would be a composite mixture 
of acoustic and structural mode shapes. (For a 
similar formulation, for this type of problem, 
involving mode shapes see Fahy (1985).) 

 
Equation 7 is the general coupled equation for an 

acoustic and structural oscillator. This equation will 
be explored in the remainder of this paper. Note that 
we have the following five parameters on which the 
problem depends: ωs, (c n π / L), ζs, ζa and β which 
are respectively the uncoupled structural natural 
frequency, the uncoupled acoustic natural 
frequencies, the uncoupled structural damping ratio, 
the uncoupled acoustic natural frequency, and the 
coupling parameter. 

3. EXAMPLES OF COUPLED SYSTEM  

We wish to find when Equation 7 gives a 
maximum response. Figures 2 and 3 give examples 
of two types of frequency response functions for the 
spring force modelled by Equation 7. In both figures 
the frequency axis is normalised on the acoustic 
natural frequency of the uncoupled system and the 
force in the spring is normalised by dividing by ρ c 
Q. This results in the frequency axis being 1.0 at the 
frequency corresponding to the uncoupled acoustic 
natural frequency.  

 
The difference between Figure 2 and Figure 3 is 

the relationship between the coupling parameter β 
and the acoustic and structural damping ratios. In 
Figure 1 as ζζβ >  while in Figure 2 as ζζβ < . 
This criterion emerges from the analysis as the major 
factor in controlling the type of frequency response 
functions found. Within each figure the coupling 
parameter and the damping ratios have been kept 
constant and the various curves correspond to 
different values of uncoupled structural natural 
frequency. Such different values could be obtained 
by varying the mass of the piston arrangement.  

 
In Figure 2 each frequency response function has 

two resonance peaks close to the uncoupled acoustic 
natural frequency. This is perhaps not surprising 
since there are two resonant systems. Also, note that 
the largest peak does not occur in the case when the 
uncoupled acoustic and structural frequencies are 
equal but when the structural frequency is less than 
the acoustic frequency. The peak with the maximum 
possible value, for the parameters used to construct 
the figure, is shown with an unbroken line. 

 
In Figure 3 the coupling parameter and the 

damping ratios are again kept constant and each 
curve corresponds to a different value of uncoupled 
structural frequency. In this case the largest resonant 
peak, shown with the unbroken line, is a single peak 
and is located at the coincidence of the uncoupled 
acoustic and structural parameters. The other 
frequency response functions, all of which have 
resonance peaks less than the curve with the 
maximum peak, again have two peaks although 
further exploration reveals that this is not necessarily 
always true. However, it is true that for as ζζβ <  
the largest peak is always associated with a 
frequency response function with a single peak. 

 
Finally it should be noted that if a simulation of 

the coupled system had been undertaken then just 
one of the curves in Figure 2 or Figure 3 would have 
been calculated and the height of the largest peak 
would have been taken as the worst case. However, 
the actual system when built would be different to 
that simulated and may correspond to the largest 
peak in the Figures. Hence the objective of finding 
the height of the largest peak. 

4. ANALYSIS OF COUPLED SYSTEM  

The mathematics required to determine the global 
maximum of Figure 2 or Figure 3 from Equation 7 
requires more space than is allowed in this paper. 



Consequently, the method will be described and 
illustrated with the mathematical details left to a 
companion paper. Essentially the method used is that 
of the calculus of variations. The starting point is to 
rewrite Equation 7 in terms of new variables as 
follows 
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where there are now two frequency variables Ωs and 
Ωa and for simplicity we examine the case where n = 
1. The two frequency variables are given by  
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making the problem one involving frequency in two 
dimensions.  
 

The maximum value of Equation 9 may now be 
attempted by treating it as a two dimensional 
maximisation problem. A typical contour plot of 
Equation 9 is given by Figure 4. This plot 
corresponds to the case in Figure 2 where each 
frequency response function has two peaks. The 
global maximum peak is located at point A with the 
second peak at point B. The point C is a saddle point 
between the two main peaks and it can be shown that 
A, B and C lie on a straight line. The curved lines, in 
a hyperbolic form labelled G1 and G2, are the 
locations of the natural frequencies of the un-damped 
system. Note that the peaks are located close to, but 
not on these lines.  

 
In Figure 4 the frequency response functions 

illustrated in Figure 2 are found along straight 
sectional lines drawn from the origin. Thus sections 
of the two-dimensional function along lines P, Q, R, 
S and T correspond to the five frequency response 
functions in Figure 2. Line P, corresponding to 
ωs / ωa = 0.7, does not go through either of the peaks 
but does see maxima where it crosses the main 
ridges corresponding to the natural frequencies. Line 
Q, corresponding to ωs / ωa = 0.849 , goes through 
the maximum peak at A while line S corresponding 
to ωs / ωa = 1.11, goes through the second global 
peak at B. Line R, corresponding to ωs / ωa = 0.988,  
goes through the saddle point at C while section T 
corresponds to the section having ωs / ωa = 1.2. 

 
The formal approach to finding expressions for 

the global maxima would be to take the absolute 
value of the denominator of Equation 9 and then to 
take derivatives with respect to Ωs and Ωa The two 
resulting equations could then be solved 

simultaneously to find the locations of the minima of 
the denominator. Finally the location of the minima 
could be substituted back into Equation 9 to find 
expressions for the maxima. This has been attempted 
using a computer algebra system (Mathematica 
2007) but yielded equations that were too complex to 
be of much use. Instead the computer algebra system 
was used to develop solutions using the calculus of 
variations and then to simplify them using Taylor 
series. 

 
The results of the analysis gave rise to the 

following expressions for the maxima of Equation 9. 
 
For the case where there are two peaks, the 

criteria for which is  
 

as ζζβ >  

 
The global peak is given by  
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and the second peak is given by  
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For the case where there is one peak for which  

as ζζβ <  

 
The peak is given by  
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All the above equations have been checked using 
numerical values and, for example, agree with the 
peak heights illustrated in Figures 2 and 3. 

5. DISCUSSION  

Three approximations have been made in 
developing the above formula. The validity of these 
approximations is as follows. 

5.1 Approximation 1 

It has been assumed that the combined resonance 
of the system can be deduced by considering the 
interaction of one structural mode and one acoustic 
mode and ignoring other structural and acoustic 
modes. It would be nice to include several acoustic 
and structural modes all interacting but this would 



involve three or more close frequencies. Such an 
analysis may be attempted now that some of the 
features of two close natural frequencies have been 
deduced. The key point to start such an analysis is to 
determine a criterion for when two modes are close. 
This may be deducible from the present analysis but 
remains to be attempted. For the moment the above 
analysis is only valid if there is no close acoustic or 
structural natural frequency in addition to those 
being considered. 

5.2 Approximation 2 

The acoustic and structural modes have been 
simplified by considering only the response due to 
the poles in the positive frequency half plane. The 
errors due to this approximation have been studied 
and are much less than those due to possible 
neighbouring modes that have been ignored. Thus if 
it is valid to make approximation 1 then it is 
certainly valid to make this approximation.  

 

5.3 Approximation 3 

In developing the formula for the maximum 
response use has been made of Taylor series. The 
series expansion is for small acoustic damping 
values. The errors involved are being investigated 
but appear small and thus the formula should be 
valid for the typical case of small acoustic damping 
ratio.  

6. CONCLUSIONS  

The following conclusions may be drawn. 
1. The acoustic and structural systems couple to 

produce one or two resonant modes. 
2. The maximum response may not occur when 

the uncoupled acoustic and structural resonant 

frequencies are equal but at two frequencies 
slightly less than and slightly more than either 
uncoupled frequency.  

3. Equation 11 gives the maximum possible 
response of the coupled system. It involves 
coupling parameter β and structural and 
acoustic damping ratios. The coupling 
parameter β  depends on the ratio of the bulk 
stiffness of the fluid and the structural stiffness 
of the structure. It also depends on the area over 
which the fluid and structure are coupled. 

4. The Equation for the maximum response of the 
coupled system can be used in design work to 
combine analyses of acoustic and structural 
systems that have been studied separately. 
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Figure 1. A simple system for developing the analysis of coupled acoustic-structural systems. Acoustic waves 
are set up in the cavity of length, L, and with cross-sectional area, S, by the acoustic source of volume velocity, 
Q, on the left. The piston arrangement on the right is a mass-spring-damper that acts as a resonant structural 
system. The small pipe on the left with cross-sectional area, S1, allows waves to pass out of the system and thus 
provides acoustic damping for the cavity. 
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Figure 2. Frequency response functions for 
coupled system with ζs = 0.01, ζa = 0.03, β = 
0.013 and ωs/ωa = ---- 0.7,  0.849, - - - 0.988, 
-⋅-⋅- 1.11, 

Figure 3. Frequency response functions for 
coupled system with ζs = 0.03, ζa = 0.04, β = 
0.001 and ωs/ωa = ---- 0.7, - - - 0.845,  1.0, -⋅-
⋅- 1.1,  

Figure 4. Contours of Equation 9 on a two-dimensional frequency plot. Sections along the lines 
P, Q, R, S and T correspond to the curves in Figure 2. The global maxima is at A with a second 
peak at B and a saddle at C. Lines G1 and G2 correspond to the locus of natural frequencies of 
the undamped coupled system. 


