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ABSTRACT 
In this study a three-dimensional nonlinear time-

marching method and numerical analysis for 
aeroelastic behaviour of oscillating  blade row has 
been presented. The approach is based on the 
solution of the coupled fluid-structure problem in 
which the aerodynamic and structural equations 
are integrated simultaneously in time. 

The unsteady Reynolds-averaged Navier-Stokes 
(RANS) solver coupled with modified Baldwin and 
Lomax algebraic eddy viscous turbulence model, is 
applied to calculate three-dimensional unsteady 
viscous flow through the vibrating rotor blade row. 
The structure analysis uses the modal approach and 
3D finite element model of a blade. The code is 
proven to be accurate and efficient by computing 
the 11th Aeroelastic Standard Configuration, 
namely subsonic and transonic flow through a 
turbine cascade at design and off-design conditions. 
Comparison of the calculated and experimental 
results has shown sufficient quantitative and 
qualitative agreement for local performances 
(unsteady pressure amplitude and phase 
distribution). The numerical analysis of 3D 
unsteady viscous flow through the last turbine stage 
rotor blade row is presented. 

1. INTRODUCTION 
In modern turbomachinery design and 

development it is important to predict the 
aeroelastic behaviour of blades. This is true not only 
for aircraft compressor and fan blade rows, but also 
for the last stages of steam and gas turbines that 
work at highly loaded off-design conditions.  

The prediction of the unsteady pressure loads and 
aeroelastic behaviour of blades may involve the 
computation of shock waves, shock/boundary layer 
interaction and boundary layer separation, which 
could not be accounted in frame of inviscid 
methods. In order to overcome this limitation 

complete Reynolds-averaged Navier-Stokes 
(RANS) equations are to be used to model complex 
and off-design cases of turbomachinery flows. 

 The unsteady prediction models for 3D viscous 
flutter have been discussed in literature over the last 
ten years (Sayma et al, 1998; Weber et al, 1998; 
Vasanthakumar et al, 2001; Chassaing and 
Gerolymus, 2001; Cinnella et al, 2004 ). 

The aim of this study is to present the numerical 
method for discretizing of Navier-Stokes equations 
by using the second order by time and coordinates 
explicit finite-volume Godunov’s type difference 
scheme, and moving hybrid H-O structured grid.  

In the present study the 3D Reynolds-averaged 
Navier-Stokes (RANS) solver, coupled with 
modified Baldwin and Lomax’s algebraic eddy 
viscous turbulence model, is applied to calculate 
three-dimensional unsteady viscous flow through 
the vibrating steam turbine blade row.  

The structure analysis uses the modal approach 
and 3D finite element model of a blade. 

To validate the numerical viscous code 
developed there was performed the comparison the 
numerical calculations results with the measure data 
for 11th  International Standard Configuration, 
which represents a turbine blade geometry, and with 
the calculated results of other authors presented in 
works (Fransson et al, 1999; Cinnella et al, 2004). 
The comparison has shown sufficient quantitave 
and qualitative agreement for local unsteady 
performances (pressure amplitude and phase 
distribution). 

The numerical analysis results of aeroelastic 
behaviour for the rotor blade row of the steam 
turbine last stage for nominal and off-design regime 
were presented. 

2. GOVERNING EQUATIONS 
The full system of unsteady compressible 

Reynolds-averaged Navier-Stokes (RANS) 
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equations expressing the conservation laws, can be 
presented in Cartesian coordinate system rotating 
with a constant angular velocity ω  as follows:   
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where - is the symbolic vector of conservative 
variables;  and  are inviscid and 
viscous flux vectors respectively; 

U
GFE ,, QSR ,,

H  is the source 
term caused by uninertial coordinate system 
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Here is pressure; p ρ is density; 1υ , 2υ , 3υ  are the 
velocity components; jiτ  (i,j=x,y,z) are the viscous 
stress tensor components given by 
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μ is the dynamic viscosity coefficient; λ is heat 
conduction coefficient. 
The system of equations (1) is completed with the 
perfect gas law equation 

ργ
ε p

1
1
−

= , where γ is the 

adiabatic exponent (specific heat ratio). 
In this study it was applied the algebraic 

turbulence model based on the original two-layer 
model (Cebeci and Smith, 1974) and modified by 
Baldwin and Lomax (Baldwin and Lomax, 1978). 

A multipassage computational domain includes a 
number of blade  passages  depending from 
interblade phase angle of oscillations (IBPA) that 
provides flow periodicity conditions: 

1≥n

,0,360
≠

⋅
= IBPA

IBPA
zn  

where z is the minimum integer which leads to an 
integer value for . Each of passages includes a 
blade and has an expansion in the circumferential 
direction, which is equal to the pitch of a blade row. 
The three-dimensional grid consists of a sequence 
of two-dimensional grids that are stacked together 
in the radial direction from hub to tip. The two-
dimensional grids are similar and discretized using 
hybrid H-O grid (Figure 1). The external H-grid 
remains fixed during the calculation while O-grid is 
rebuilt in each iteration according to the blade 
moving. 

n

 

 
Figure 1: Viscous mesh, inner O-mesh, outer 

 H-grid. 
 
For the most of flows under the high Reynolds 

numbers the flow field at the infinity from solid 
body looks like ideal gas flow. So for 
turbomachinery calculations boundary conditions at 
the inlet and outlet of the computational domain are 
based on the theory of characteristics for unsteady 
one-dimensional problem as in case of Euler 
equations. Assuming that the axial flow velocity is 
subsonic at the inlet and outlet of the cascade, 
boundary conditions are established by replacing 
incoming waves with fixed flow values, i.e. the total 
pressure, total temperature and flow angles are 



imposed at the inlet boundary while the static 
pressure is kept constant at the outlet boundary. 

At a solid wall the so called no-slip condition is 
given by wυυ = , where wυ  is wall velocity in the 
considered reference system. 

For the temperature either the wall temperature is 
fixed  or the heat flux is determined by the 
physical conditions, that is 

wTT =

n
T

qw ∂
∂

−= λ . 

For an adiabatic wall 0=wq . 
The second thermodynamic variable at the solid 

wall can be obtained from the momentum equation 
projected on the normal direction to the wall, which 
reduces to  

τngrad
n
p
=

∂
∂

. 

Equations (1) are written for each cell of the 
computational mesh following to Godunov’s idea 
(Godunov at al, 1976) but in more universal form 
for an arbitrary moving three-dimensional 
difference grid (Gnesin at al, 2004): 
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Here subscripts and superscripts correspond to 
“old” and “new” cells; σ  and  are the area and 
normal velocity of “middle” side. The gasdynamic 
parameters on the lateral sides (expressions in 
square brackets with integer indices) are defined by 
the solving of the problem about the break-down 
(Riemann problem) of an arbitrary discontinuity on 
the moving interfaces between two adjacent cells by 
using a piecewise linear approximation of 
parameters in grid cells. Constructed in this way the 
difference scheme is a monotonic scheme, and it has 
second-order accuracy  on the smooth solutions 
with respect to spatial and time coordinates. 

nw

The dynamic model of the oscillating blade with 
use of the modal approach reduces to a set of 
decoupled differential equations relatively to modal 
coefficients of natural modes:  
( ) ( ) ( )ttqtqhtq iiiiii λω =++ 2)(2 .                     (3) 

Here  –mechanical damping i -mode coefficient; ih

iω  – natural i -mode frequency; iλ  – modal force 
relative to  i -mode displacement, calculated at 
every iteration by instant pressure distribution on 
blade surface 
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where  − blade surface pressure. p

Having defined the modal coefficients  from 
the system of differential equations (3), blade 
displacement  and velocity are obtained as 

iq
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3. NUMERICAL ANALYSIS 
The numerical verification  of the method 

presented has been performed for the 11th Standard 
Configuration (Fransson et al, 1999). Three selected 
experiments are proposed as test cases: one 
subsonic case ( )69.02 =M  for code calibration, 
one transonic off-design case with high incidence 
inlet flow angle ∼18 deg ( and a 
separation bubble on the suction surface, and 
supersonic off-design case ( with 
incidence flow angle ∼33 deg. The details of these 
cases including full blade geometry are given in 
work (Fransson et al, 1999). 

)99.02 =M

)42.12 =M

Viscous computations have been performed using 
O-grids with 390× 42 cells, and the average value 
of for the first cell near the wall was about 1.0. +y

Figure 2 shows the comparison of predicted 
steady results for subsonic case in terms of 
isoentropic Mach number distribution. It 
demonstrates a smooth change of flow over the 
blade surfaces without remarkable disturbances. 
The integer “1” corresponds to the method 
presented results, the integer  “2” corresponds to the 
experimental results, and the integer “3”  
corresponds to calculated results, received with use 
of VOLFAP code (unsteady quasi-3D viscous flow 
code for Navier-Stokes equations) and presented in 
work (Fransson et al, 1999).  
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Figure 2:  Mach number distribution, midspan, 

off-design transonic case, M = 0.69 is2

 



The calculations show the sufficient agreement 
with experimental data and VOLFAP code. Some 
deviation occurs in the middle of the blade on 
suction side compared to the experiment. 

Reasons for the deviations between experimental 
data and numerical results may be found in real 
flow effects which cannot be captured by the 
applied numerical model or are lost due to the 
measuring technique (for example inaccuracies in 
measurement of pressure, estimation of flow angles, 
averaging of flow values over pitch and span). 

Also the off-design calculations show in Figure 3 
sufficient agreement with experimental data with 
exception of the shock prediction. The shown off-
design case indicates a separation bubble to be 
present from leading edge  to 30% of true chord 
(see Figure 4) and a shock at about 80% of true 
chord, whereas the experiment shows it to be at 
around the 65% mark.  It should be noted that only 
the viscous code can predict the separation bubble 
indicated by the deceleration which occurs on 15-
25% relative chord on suction side. 

 

 
Figure 3:  Mach number distribution, midspan, 

off-design transonic case, M = 0.99 is2

 

 
Figure 4: The streamlines near the leading edge, 

M = 0.99  is2

 
Finally  Figure 5 shows the sufficient agreement 

between calculated results and experimental data for 
regime  M = 1.42 and incidence angle β = 33 deg.  is2

The numerical model demonstrates the sufficient 
prediction of  Mach number distribution over the 
blade surface and shock position on the suction 
side. 
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Figure 5:  Mach number distribution, midspan, off-

design transonic case, M = 1.42 is2

 
For the unsteady case (transonic regime 

)99.02 =M  the blades oscillate in the first bending 
mode with bending angle equal to 90 deg  with 
respect to the chord direction, oscillation amplitude 
equal to 0.0035 of chord length, and a reduced 
frequency equal to 0.1545. 

The presented results are obtained from a Fourier 
transformation of the unsteady time domain solution 
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where is a physical quantity under study;  
 are the Fourier series coefficients; ν is 

a vibration frequency. 
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The pressure coefficients in amplitude and phase are 
defined by formulas 
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where  is amplitude of nonstationary pressure 
along the blade; 

)(xp
)(xϕ is a phase; and are the 

total and static pressure at the inlet of cascade; c is a 
chord length; h is amplitude of bending oscillations. 

0p 1p

Only the first harmonics of the pressure response 
are compared in terms of amplitude and phase. In 
the nonlinear results higher harmonics had nearly 
no influence. 

The nonstationary aeroelastic characteristics of 
the 11th  Standard Configuration for the transonic 
off-design case are demonstrated in Figures 6,7. 



 
(a) amplitude 

 

 
(b) phase 

 
Figure 6: The amplitude and phase of the 1st  
harmonic for unsteady pressure coefficient, 

IBPA=144 deg 
 

 
(a) amplitude 

 

 
(b) phase 

 
Figure 7: The phase of the 1st  harmonic for 

unsteady pressure coefficient, IBPA=-144 deg 

We can see sufficient agreement between the 
method presented results, experimental data and 
calculated results of other authors (Cinnella et al., 
2004), for the pressure distribution in the amplitude 
(Figures 6a, 7a) and  phase (Figures 6b, 7b) for 
IBPA= ±144 deg. It should be noted that the results 
received with use of both Spalart-Allmaras and 
Baldwin –Lomax models compare reasonable well 
with experimental data except the rear part of the 
suction side. The discrepancies could be due to 
turbulence model inability to predict the position of 
the shock and to inaccuracy of the experimental 
data. 

One  of  the basic characteristics determining the 
energy exchange between the gas flow and 
vibrating blades is the aerodamping coefficient  Ξ  
which is equal to work coefficient of  aerodynamic 
forces acting on the blade during a period of 
vibrations taken with the sign “minus”. Positive 
values of this coefficient  correspond  to  dissipation 
of  vibrating blade energy in gas flow 
(aerodamping), negative values correspond to 
energy bringing to the blade (self-exciting). 

For the completeness the results for the 
aerodamping coefficient versus IBPA are presented 
in Figure 8. We can observe the positive 
aerodamping for all values of IBPA. The graphs 
demonstrate a nice agreement between the method 
proposed and the numerical results received by 
FINSUP Q3D method (Fransson et al, 1999) and 
with use the Spalart-Allmaras turbulence model 
(Cinnella et al, 2004).  

 

 
Figure 8: The aerodamping coefficient versus IBPA 

 
The method proposed was used to study 

aeroelastic behaviour for the rotor blade row of the 
last stage of 200 MW steam turbine (with the length 
of the blade l=765 mm). Simulation was conducted 
for inviscid and viscous gas through the blades 
vibrating by a given harmonic law for two regimes: 
nominal  regime with back-pressure   
and off-design regime with . Zones 
of stable and unstable vibrations have been 
predicted. 

Pap 23002 =
Pap 90002 =

Calculations were carried out with taking into 
account of the first five natural modes separately for 
each of the forms under different interblade phase 



angles (IBPA): 0; 180; ± 90 deg. The natural modes 
and frequencies of the blade vibrations in vacuum 
were obtained with use of the finite element 
analysis. A more detailed description of blade 
geometry, natural modes of oscillations and 
aeroelastic behaviour with use of inviscid model 
was given in work (R. Rzadkowski et. al, 1999). 
Figures 9,10 illustrate the dependence of the 
aerodamping coefficient averaged along the blade 
length from IBPA for each of natural modes for two 
regimes respectively. Squares correspond to viscous 
flow, rhombs  correspond to inviscid gas. 

All  the curves are of a typical sinusoidal form. 
As it has seen from the graph (Figure 10) the 3rd   
and 4th     forms may be unstable (Ξ<0) under the 
nominal regime. 

Off-design regime under  is 
characterized by considerably changed nature of 
aerodamping for inviscid and viscous gas. For 
inviscid gas all forms are damped. For viscous gas 
there are observed two zones of self-excitation: the 
1st  form under IBPA of  -90 deg, and the 3rd  form 
under IBPA of 90 deg. 

Pap 90002 =

The presented results show the coincidence of the 
calculated aerodamping coefficients in models of 
inviscid gas and viscous gas under the nominal 
regime. For a partial  regime of the 
aerodynamic coefficients for inviscid and viscous 
gas are essentially different in value and under some 
IBPA in sign. This fact confirms that only the 
viscous code can predict the aeroelastic 
characteristics of the blade row under off-design 
regimes. 

Pap 90002 =

 

 
(a) 1st  form, 100 Hz 

 

 
(b) 2nd   form, 150 Hz 

 
(c) 3rd   form, 250 Hz    

 

 
(d) 4th  form, 300 Hz  

 

 
 

(e) 5th  form, 400 Hz 
Figure 9: Dependence of aerodynamic damping 

from IBPA for regime p2 = 2300 Pa 
 

 
(a) 1st  form, 100 Hz     

 
(b) 2nd   form, 150 Hz 

 

 
(c) 3rd   form, 250 Hz 



 
(d) 4th  form, 300 Hz  

 

 
(e) 5th  form, 400 Hz 

 
Figure 10: Dependence of aerodynamic damping 

from IBPA for regime p2 = 9000 Pa 

4. CONCLUSION 
The numerical method to integrate the 3D 

Reynolds-averaged Navier-Stokes (RANS) 
equations with the use of a modified Baldwin and 
Lomax  algebraic eddy viscous turbulence model  
applied to calculate three-dimensional unsteady 
viscous flow through a vibrating  turbine cascade is 
presented. 

   The comparison of calculated and experimental 
results for the 11th Standard Configuration has 
shown sufficient quantitative and qualitative 
agreement for unsteady pressure amplitude but there 
are some discrepancies for the phase distribution, 
especially in the rear part of the suction side where 
a moving shock impinges on the boundary layer.  

  The numerical method presented here has 
shown some promise in being able to predict 
aerodamping, but  the quality of the predictions has 
to be improved with use of more perfect turbulence 
models. 
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