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ABSTRACT 

The presented paper is focused on the static stiffness 
definition of fluid layer according to the number of 
Taylor vortices. There is a gap between two cylinders, 
where the inner one is rotating and axial flow is not 
assumed. The stiffness matrix as a function of angular 
speed is determined too. The fluid layer stiffness is 
specified for rotor in static balance and problem of 
damping is not considered. The Taylor vortices' 
influence is evident in the stiffness matrix, where all the 
elements are of the same orders of magnitude. In 
comparison with the stiffness matrix derived from the 
Reynolds equations, which has contrary the major 
diagonal elements lower by several orders of magnitude 
then the others, there is a marked difference. This theory 
will be used in new design of classical journal bearing 
using Taylor vortices principle.  

1. INTRODUCTION 

Classical theory of journal bearing is based on 
Reynolds equation solution for infinite bearing 
length. This equation relies on an assumption, that 
the convective acceleration in Navier-Stokes 
equations is ignored, so the linear problem is 
solved. But the flow based on this assumption is 
characterised by the streamline that lies in the 
perpendicular plane to the rotation axis (Couette 
flow). Taylor (Taylor, 1923) established that there 
is point in concerning with this fluid flow stability. 
It is proved, that so defined fluid flow is modified 
by vortices named by Taylor for Taylor number 
greater than 41,3. Taylor number is defined by term 
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where R0 is shaft radius, ν is kinematical viscosity, 
ω is angular velocity and s is radial gap. Thus for 
T>41,3 there is impossible to use Reynolds eqs. 
Taylor vortices can exist in steady or unsteady 
cases, which is evident in non zero radial and axial 

velocity components, i.e. wave regime see Fig. 1.1. 
 

Vortex structures are characterised by following:  
Couette flow – fluid moves in the tangential 

direction around the rotating cylinder, see Fig. 1.1 
a). 

Taylor vortices (TVF) - basic steady flow 
forms into axial symmetrical toroidal Taylor 
vortices and is described by critical value Tc1 (T 
>Tc1≥ 41,3), see Fig.1.1 b). 

Wave regime (WVF) – flow changes with 
increasing angular velocity of inner cylinder and 
Taylor number too. For Tc2 >Tc1 the wave motion of 
vortices in tangential direction is observed. Critical 
number Tc2 is approximately in interval 
Tc2≈(1,1÷100)*Tc1 and depends on the gap geometry 
and fluid characteristics, see Fig. 1.1 c). 

Modulated wave regime (MWVF) – in this 
state the modulation of the wave vortices motion in 
circumferential direction is discovered and it is 
possible to define azimuth wave frequency. 
Toroidal vortices are tapered and propagate in 
tangential direction.   

Chaos (TURB) - chaos regime is observed for 
T≈(100÷1000)Tc1. It is very unstable and depends 
on radius rate and experimental experience (in case 
of quick revolution change you can get another 
fluid flow structure than in case of slow regular 
angular speed increasing). Another revolution 
increasing causes the turbulent effect formation 
disturbing the original vortices, see Fig.1.2. 

 
 
 
 
 
 
 
 



a) Couette flow b) Taylor vortices c) Wave regime 
  

 
  
  

 
Figure1.1   Vortex structures 

 
The value Tc1 is theoretically defined for infinite 

length of cylinder. Neither physical experiment nor 
numerical experiment can accomplish this 
hypothesis, therefore the critical Taylor value 
differs. Many of vortex structures were 
experimentally and numerically solved at VŠB-TU, 
see Fig.1.2, (Farnik, 2006; Kozubková et al, 2003). 
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Figure 1.2 Physical and numerical experiment of 

vortex structures [5] 
 

It is not necessary to justify the transition to 
instability by eigen value analysis, as Taylor did 
(Taylor, 1923; Chandrasekhar, 1965). There is 
possible to obtain the general steady flow stability 
condition analytically, when the Navier Stokes 
equation and continuity equation for 
uncompressible fluid and boundary condition is 
used. Problem solves steady flow disturbance 
analysis by using eigen values (Pochylý et al, 
2003). 

2. STABILITY OF STATIONARY FLOW  

The main goal is to find stability conditions of 
stationary fluid flow in rotationally symmetric 
region. Generally the double continuous bounded 
region with volume V filled by fluid is supposed. 
Coordinate system ( )ix  is inertial and ( )iy  is 

rotating coordinate system with angular velocity 
Ωω =3  around axis 3x . Because the goal of the 

work is to define the angular velocity influence on 
stability, therefore the final equations will be 
formulated in rotational coordinate system( )iy , 

using Einstein summation symbolics. Navier Stokes 
equation and continuity equation are in form 

0
1

2
2

333
2
333 =

∂
∂+

∂∂
∂

+++
ijj

i
kimmkki

i

y

p

yy

w
wy

t

w

ρ
νωεωεε

δ
δ

 

0=
∂
∂

i

i

y

w
                (2.1) 

 

In equation (2.1) the term 
tδ

wδ i  is so called 

substantial derivative defined as: 
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where iw  are the relative velocity components, p  

is pressure, ijkε  is Levi-Civit antisymmetrical 

tensor. Influence of boundary condition will be 
specified later. 

2.1 Stability conditions 

Stability conditions can be examined using the 
known principle, defined by Taylor (1923) in case 
of stability study of rotational fluid motion between 
two concentric cylinders (Taylor, 1923). Based on 
this principle the small disturbance on original 
steady flow ( ( )jii yww 00 = , ( )jypp 00 = ) is 

superimposed, i.e.: 
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Above defined terms are put into equations (2.1) 
and (2.2). Neglecting the small nonlinear terms and 
subtracting the stationary parts of solution the 



equations (2.1) a (2.2) for disturbance can be 
written in form: 
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The stability conditions will be investigated using 
eigen value and vector analysis. Eigen value can be 
determined as follows. Let 
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where s  is complex number ωiαs += , 

Re, ∈ωα . Stability point is defined by value of 
α , i.e. 0〈α . Inserting (2.6) in (2.4), (2.5), we 
obtain the following equation for definition the 
eigen values: 
 

0
1

2

2

30
0

=
∂
∂+

∂∂
∂−

−Ω+
∂
∂+

∂
∂+

ijj

i

mmij
j

i
j

j

i
i

y

h

yy

u

uw
y

u
u

y

w
su

ρ
ν

ε
            (2.7) 

0=
∂
∂

i

i

y

u
                                                          (2.8) 

Quantitative analysis of stability conditions is based 
on using boundary conditions in equations (2.7), 
(2.8). At first the equation (2.7) is multiplied by 

function *
iu  conjugate with iu  and integrated 

(scalar multiplication). So: 
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Because of evaluating α  the functions  hui ,  will 

be decomposed in real and imaginary part:  
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Inserting (2.10) in (2.11) we get the relation for α : 
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From (2.11) it is obvious, that the stability is not 
influenced by Coriolis forces. Equation (2.11) can 
be simplified using Gauss-Ostrogradskij theorem, 
continuity equation and non-permeability condition 
of boundary, i.e. 0=iinc . After simple 

adjustments and transformation into cylindrical 
coordinate system ( )3,, yΦr  and preconditions 

00 =rw and 003 =w  we obtain (2.11) in form:  
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where 
∗= iiuuu . From the expression (2.12) it is 

obvious, that instability arises in case of negative 
value of integral (2.12) and this is condition of 
Taylor vortices arising too. This situation comes up 
at specific rotor angular velocity, when convective 
acceleration forces exceed the effect of viscous 
forces. This instability appears on the first eigen 
mode shape, when( ) 0〉+ φrφr bbaa , i.e. Taylor 

number T .3,41≥  

3. NUMERICAL RESULTS 

3.1 Physical model and boundary conditions 

Numerical experiment is focused on stable 
Taylor vortices corresponding to Fig. 1.1 b). Other 
vortex structures are from point of journal bearings 
applications unsuitable and are not in this work 
investigated. Computational region was defined on 
the gap between two cylinders of following 
geometry: 
- inner radius   r=0.025 m 
- gap width   s=0.0003 m 



- cylinder length    l=0.003 m 
- eccentricity in y  direction e=0, 0.00003,       

0.00006, 0.00009  m  
Inner cylinder revolved with speed:  
- revolutions per minute n=200, 500, 600, 

700, 800, 900, 
1000, 2000, 3000, 
5000, 7000, 9000, 
11000 min-1 

Water was chosen as fluid with following physical 
properties: 
- density    ρ=1000kgm-3 
- dynamical viscosity  η=0.001Pa.s 
- kinematical viscosity  ν=0.000001m2s-1 

 

3.2 Turbulent models and results 

The length of the cylinder was defined with 
respect to reasonable number of grid elements, 
boundary planes were chosen as symmetry planes. 
Moreover every vortex must be covered at least by 
ten grid elements in every coordinate direction. Grid 
elements number was around 600000.  

Taylor number according to given speed lied in 

interval 0;1500∈T , Reynolds number 

150;11000Re ∈ . Reynolds number 

characterizes type of fluid flow, i.e. laminar, 
transient between laminar and turbulent and 
turbulent flow. Based on values of Reynolds 
number and on physical and numerical experiments 
(Kozubková et al, 2003; Pochylý et al, 2002) 
laminar model was chosen. Standard two-equation 

ε−k  turbulent models underestimate vortex 
structures or number of vortices tends to zero. Only 
LES model is for computation available too, but it 
takes much more time due to time dependent 
equations and many testing cases. Therefore 
laminar model was selected. For illustration some 
results (speed n=3000 min-1 and eccentricity 
e=0.00006m) are shown in Fig. 3.1.  
 
narrow part of gap 

 
wide part of gap 

 
Figure 3.1 Radial velocities in the narrowest and 

widest part of gap. 
 
In Fig. 3.1 we can see number of vortices, which 
was the same in both parts of the gap. Differences 

are evident in vortex shape. Vortices distribution is 
regular. It is better observed in schematic figure of 
radial velocity in the same cut plane, see Fig. 3.2. 
In this case the numerical convergence was 
satisfactory.  
 

 
Figure 3.2 Radial velocities in the most thin and 

most wide part of gap 
 

At high speed ( 1min9000 −≥n ) in given 
geometry tasks have bad convergence, which 
indicates previously described wave regime.  In this 
case tasks must be solved as time dependent. 
Because vortices number does not change in 
defined regime, the value of moments and stiffness 
matrix is nearly constant. But there are not many 
problems of this kind. In different geometries this 
problem can be more significant (Farnik, 2006). 
Number of vortices changes between three to seven 
according to revolution and eccentricity, see Fig. 
3.4. For lower revolution the eccentricity influence 
is lower and for higher revolution is higher.  
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Figure 3.4 Vortices number vs. revolution and 

eccentricity 
 

4. STIFFNESS OF FLUID LAYER            

Stiffness of fluid layer is defined in dependence 
on region created by two cylinders. The inner 



cylinder rotates with constant angular velocity, the 
outer one is stationary. Axis of inner cylinder is 
shifted by the eccentricity specified by vector 
components ( )21,ee=e . Force caused by fluid 
impacting on rotor depends on eccentricity and is 
given by: 

 
      F=-Ke                                                        (4.1) 
 

where the stiffness matrix K= 








2221

1211

KK
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 with 

elements in following relations 2211 KK = ,  

2112 KK −= . The stiffness matrix value of fluid 
layer with Taylor vortices was computed by 
applying the numerical results of forces and 
moments obtained by software Fluent. Moments 
were specified for rotor center, see Fig. 4.4. The 
stiffness matrix K  has all elements of the same 
orders. The stiffness matrix derived from Reynolds 
equation has vice versa the major diagonal elements 
lower by several orders of magnitude then the 
others.  So the two matrices differ considerably and 
stiffness in case of used Taylor vortices is higher 
and increases according to angular velocity. Wave 
moment values yx MM ,  are negligible. Twist 

moment value zM  characterizes input defining 
dissipation of mechanical energy. 
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Figure 4.4 Stiffness and moment vs. revolution and 

eccentricity 
    
 

5. CONCLUSION 

Numerical modeling demonstrates existence of 
stable Taylor vortices region for wide angular speed 
interval in case of given gap width. Theory can be 
applied for design of journale bearings. Unlike 

classical theory of journal bearings based on 
Reynolds equation the stiffness matrix has all 
elements of the same orders. It will significantly 
influence rotor dynamics based on Taylor vortices 
principle. There was only static stiffness presented 
in this paper. The theory is being developed for the 
added mass and damping evaluation as well. 
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