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ABSTRACT

This work is concerned with the numerical solu-
tion of inviscid compressible fluid flow through a
channel with moving walls. We present two for-
mulations of the Euler equations describing com-
pressible flow in the ALE (Arbitrary Lagrangian-
Eulerian) form. These two formulations are dis-
cretized in space by the discontinuous Galerkin
method. The time discretization is carried out
with the aid of a semi-implicit linearized scheme
resulting in only one linear system on each time
level. Currently, the motion of the wall is pre-
scribed by a given formula. As an example we
present here the flow simualtion in a channel with
a pulsation sinusoidal bump at the lower wall.

1. INTRODUCTION

In a number of problems of science and tech-
nology we meet the necessity to solve initial-
boundary value problems in time dependent do-
mains. The solution of such problems is very
difficult and this is the reason that practically
all works dealing with evolution partial differ-
ential equations consider problems in domains
that are independent of time. Numerical sim-
ulation of processes in time dependent domains
can be solved with the aid of the ALE (arbitrary
Lagrangian-Eulerian) method proposed e.g. in
Nomura and Hughes (1992). This method can
be applied in the framework of various numer-
ical techniques, but the solution of technically
relevant problems requires the use of sufficiently
accurate, robust and flexible method. A method
suitable for the solution of complex problems de-
scribing compressible flow is the discontinuous
Galerkin (DG) finite element method using ad-
vantages of the finite volume as well as finite ele-
ment approaches and allowing to obtain schemes
with a higher order accuracy in a natural way.
The DG method is based on the idea to approx-
imate the solution of an initial-boundary value
problem by piecewise polynomial functions over

a finite element mesh without any requirement
on interelement continuity.

Here we present the ALE version of the DG
method for the solution of inviscid compress-
ible flow in time dependent domains. We start
here from the paper Doleǰśı and Feistauer (2004),
where a DG semi-implicit method is described,
requiring the solution of a linear algebraic sys-
tem on each time level. It was shown (Feistauer
and Kučera (2007)) that this method is uncon-
ditionally stable and allows the solution of flows
with all Mach numbers. In this paper we assume
that the dependence of the domain on time is
known, but it is only the first step to the solu-
tion of a complete coupled problem, when the
shape of the domain is influenced by a moving
fluid. The developed technique will be applied to
the modelling of an air flow through the glottal
space of a human vocal tract.

2. CONTINUOUS PROBLEM

We consider inviscid compressible flow in a
bounded domain Ωt ⊂ IR2 depending on time
t ∈ [0, T ]. Let the boundary of Ωt consist of
three different parts ∂Ωt = ΓI ∪ΓO ∪ΓWt , where
ΓI and ΓO represent the inlet and outlet and ΓWt

represents impermeable walls that may move in
dependence on time.

We shall discretize the Euler equations written
in the conservative form (Feistauer, Felcman and
Straškraba (2003)):

∂w

∂t
+

2∑

s=1

∂f s(w)

∂xs
= 0, in Ωt, t ∈ (0, T ), (1)

w = (ρ, ρv1, ρv2, e)
T ∈ IR4,

f i(w)

= (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (E + p)vi)
T.

We use the following notation: ρ - fluid density,
p - pressure, v = (v1, v2) - velocity vector, E -
total energy. This system is equipped with stan-
dard inlet and outlet boundary conditions. On



Figure 1: The ALE mapping At.

the moving wall we impose the impermeability
condition v ·n = z ·n, where n is the unit outer
normal to ΓWt and z is the speed of the moving
boundary ΓWt (see below). To close system (1),
we add the relation for pressure derived from the
equation of state:

p = (γ − 1) (E − ρ|v|2/2). (2)

Here γ > 1 is the Poisson adiabatic constant.

3. ALE FORMULATION

The dependence of the domain on time is taken
into account with the aid of a regular ALE map-
ping from a reference domain Ω0 onto the current
configuration Ωt:

At : Ω0 → Ωt, i.e. At : X 7→ x = x (X , t). (3)

Given such a mapping, we define the ALE ve-
locity:

z̃(X , t) =
∂

∂t
At(X ), t ∈ [0, T ],X ∈ Ω0, (4)

z(x , t) = z̃(A−1
t (x ), t), t ∈ [0, T ], x ∈ Ωt

and the ALE derivative of a function f = f(x , t)
defined in Ωt:

DA

Dt
f(x , t) =

∂f̃

∂t
(X , t)|X=A−1

t (x ), (5)

where

f̃(X , t) = f(At(X ), t), X ∈ Ω0.

It is possible to show that

DAf

Dt
=

∂f

∂t
+z·∇f =

∂f

∂t
+div(zf)−f divz. (6)

This leads to two different formulations of the
Euler equations in ALE form:

1)
DAw

Dt
+

2∑

s=1

∂f s(w)

∂xs
− z · ∇w = 0, (7)

2)
DAw

Dt
+

2∑

s=1

∂gs(w)

∂xs
+ w divz = 0,

where gs, s = 1, 2, are modified inviscid fluxes

gs(w) := f s(w) − zsw. (8)

4. SPACE SEMIDISCRETIZATION

Let Th be a partition of Ωt into a finite number
of triangles Ki numbered by an index set I. Let
Γij = ∂Ki ∩∂Kj be a common edge of two trian-
gles or edges, which form the boundary ∂Ω. We
use such a numbering that for each i ∈ I we can
define an index set S(i) that ∂Ki = ∪i∈S(i)Γij.

The DG method uses the finite element space
of discontinuous piecewise polynomial functions

Sh = Sr,−1(Ω,Th) = {v; v|K ∈ Pr(K) ∀K ∈ Th},
(9)

where Pr(K) is the space of all polynomials on K
of degree ≤ r. Moreover, we shall consider a finite
dimensional space of vector-valued functions

Sh = [Sh]4. (10)

Let nij denote the unit outer normal to ∂Ki on
the side Γij . Functions ϕ ∈ Sh are in general
discontinuous on interfaces Γij . By ϕij = ϕ|Γij

and ϕji = ϕ|Γji
we denote the values of ϕ on Γij

considered from the interior and the exterior of
Ki, respectively.

4.1. Formulation 1

We multiply system 1) in (7) by a test function
ϕ ∈ [Sh]4 and integrate over Ki ∈ Th. With
the aid of Green’s theorem and summing over all
i ∈ I, we obtain the discrete ALE formulation of
the Euler equations

∑

Ki∈Th

∫

Ki

DAw

Dt
· ϕ dx + b1

h(w,ϕ) (11)

−
∑

Ki∈Th

∫

Ki

2∑

s=1

zs
∂w

∂xs
· ϕ dx = 0,

where we define the discrete convective form
b1
h(·, ·) as

b1
h(w,ϕ) =

∑

i∈I

∫

Ki

2∑

s=1

f s(w) ·
∂ϕ

∂xs
dx

︸ ︷︷ ︸
T 1
1

(12)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

Hf (wij ,wji,nij) · ϕ dS

︸ ︷︷ ︸
T 1
2

.

In the term T 1
2 , we have incorporated an

approximation using a numerical flux Hf , as
known from the finite volume method. The
approximate solution is defined as wh ∈ [Sh]4

such that (12) holds for all ϕh ∈ [Sh]4.



4.2. Formulation 2

To obtain the second formulation of our problem,
we multiply equation 2) in (7) by a test function
ϕ ∈ [Sh]4 and integrate over Ki ∈ Th. Similarly
as in the preceding, we obtain

∑

Ki∈Th

∫

Ki

DAw

Dt
· ϕ dx + b2

h(w,ϕ) (13)

+
∑

Ki∈Th

∫

Ki

divz w · ϕdx = 0,

where we define the discrete convective form
b2
h(·, ·) as

b2
h(w,ϕ) =

∑

i∈I

∫

Ki

2∑

s=1

gs(w) ·
∂ϕ

∂xs
dx

︸ ︷︷ ︸
T 2
1

(14)

+
∑

i∈I

∑

j∈S(i)

∫

Γij

Hg(wij ,wji,nij) · ϕ dS

︸ ︷︷ ︸
T 2
2

.

Again, in term T 2
2 , we incorporate a numerical

flux Hg.

5. SEMI-IMPLICIT TIME
DISCRETIZATION

Schemes (12) and (14) represent a system of
ordinary differential equations, which we must
discretize with respect to time. Explicit time
discretization is however undesirable due to a
CFL-stability condition, which limits the time
step proportionally to the Mach number. A
fully implicit scheme presents us with the task
of solving a large nonlinear system on each time
level. We therefore use the method presented in
[1] and adapt it to the ALE setting. A backward
Euler method is used and the nonlinear terms in
the scheme are linearized using their respective
properties. The resulting systems are solved
using block-Jacobi preconditioned GMRES or
the UMFPACK direct solver.

5.1. Formulation 1

We consider a partition 0 = t0 < t1 < t2 . . . of
the time interval (0, T ) and set τk = tk+1 − tk.
We use the symbol wk

h for the approximation of

w(tk). Moreover, we use the notation zk = z(tk).

The ALE derivative can be approximated by the
finite difference:

DAw

Dt
(x , tn+1) (15)

=
∂w̃

∂t
(X , tn+1)|X=A−1

tn+1
(x )

≈
w̃n+1(X ) − w̃n(X )

τn
.

In what follows we shall use the following nota-
tion:

〈wn〉ij = (wn
ij + wn

ji)/2 (16)

and

ŵn(x) = wn(Atn(A−1
tk+1

(x))), x ∈ Ωtk+1
. (17)

In the linearization of b1
h(·, ·) we shall use the

homogeneity of the Euler fluxes, which implies

f s(w) = As(w)w, where As(w) =
Dfs(w)

Dw
.

(18)
The term T 1

1 in (15) is linearized in the following
way:

T1 ≈
∑

i∈I

∫

Ki

2∑

s=1

As(ŵ
k)wk+1

h ·
∂ϕh

∂xs
dx. (19)

As for the term T 1
2 , the Vijayasundaram numer-

ical flux is chosen, since it is suitable for the lin-
earization. This numerical flux has the form

Hf (wL,wR,n) (20)

= P +
(

wL + wR

2
,n

)
wL

+P−
(

wL + wR

2
,n

)
wR,

where P + and P− are a positive and negative
splitting of the matrix

∑2
s=1 As(w)ns. We there-

fore linearize T 1
2 using

Hf (wk+1
ij ,wk+1

ji ,nij) (21)

≈ P +
f

(
〈ŵk〉ij ,nij

)
wk+1

ij

+P−
f

(
〈ŵk〉ij ,nij

)
wk+1

ji .

The remaining terms in (12) due to the ALE for-
mulation are linear with respect to w and can be
treated implicitly. If we introduce the form



bh(ŵk,wk+1,ϕ) (22)

=
∑

i∈I

∫

Ki

2∑

s=1

As(ŵ
k)wk+1 ·

∂ϕ

∂xs
dx

−P +
f

(
〈ŵk〉ij,nij

)
wk+1

ij

−P−
f

(
〈ŵk〉ij,nij

)
wk+1

ji

−
∑

Ki∈Th

∫

Ki

2∑

s=1

zk+1
s

∂wk+1
h

∂xs
· ϕ dx,

then the resulting semi-implicit scheme can be
formulated in the following way: For each k ≥ 1
find wk+1

h such that

a) wk+1
h ∈ Sh, (23)

b)
wk+1

h − ŵk
h

τk

+ bh(w̃k
h,wk+1

h ,ϕh) = 0

∀ϕh ∈ Sh, k = 0, 1, . . . ,

c) w0
h = Πhw0,

The condition (23) is equivalent to a linear al-
gebraic system. We solve it either by the direct
solver UMFPACK (Davis and Duff (1999)) or we
apply the GMRES method with block Jacobi pre-
conditioning.

5.2. Formulation 2

We proceed similarly as in the previous case. In
T 2

1 we use the approximation

gs(w
k+1) = (As(w

k+1) − zk+1
s I)wk+1(24)

≈ (As(ŵ
k) − zk+1

s I)wk+1.

In T 2
2 we use the Vijayasundaram numerical flux

for g defined using the positive and negative split-
ting of the matrix

P (w,n) =
2∑

s=1

As(w)ns − z · n I. (25)

Thus we can obtain a semi-implicit linearized
scheme similarly as above.

5.3. Boundary conditions and stability

On the inlet and outlet it is necessary to use non-
reflecting boundary conditions transparent for
acoustic effects coming from inside of Ω. There-
fore, characteristics based boundary conditions
described in Feistauer and Kučera (2007) are

used. On the moving wall, we prescribe the nor-
mal component of the velocity v ·n = z ·n, where
n is the unit outer normal to the moving bound-
ary. Other quantities, i.e. the tangential velocity,
pressure and density are extrapolated.

In order to guarantee the stability of the pro-
posed method, we consider the CFL-stability
condition

τk max
Ki∈Th

1

|Ki|

(
max
j∈S(i)

|Γij |λ
max
P (wk

h
|Γij

,nij)

)
(26)

≤ CFL,

where |Ki| denotes the area of Ki, |Γij | the length
of the edge Γij, CFL is a given constant and
λmax
P (wk

h
|Γij

,nij)
is the spectral radius of the ma-

trix P (wk
h|Γij

,nij) (see (25)). The maximum is
taken over Γij.

Numerical experiments (cf., e.g. Doleǰśı and
Feistauer (2004), Feistauer and Kučera (2007))
however show that the method is practically un-
conditionally stable. Usually, in the begining of
the computational process we use a smaller CFL
number, for example CFL≈ 10 and then, during
the computational process, CFL is successively
increased.

6. NUMERICAL EXAMPLE

The method using piecewise quadratic elements
(i.e. r = 2) was applied to the solution of com-
pressible inviscid flow through a channel with one
fixed wall of the form of a straight line, and a pe-
riodically oscillating wall with time period 4π.
We assume that parts of the walls are time inde-
pendent near the inlet and outlet. We consider
the inlet and outlet as straight segments given
by the conditions X1 = −2 and X1 = 2, respec-
tively. Further, we assume that the upper wall
is given by the condition X2 = 1 and that the
ALE mapping is equal to the identity in the sets
[−2,−1] × [0, 1] and [1, 2] × [0, 1]. Otherwise we
construct the ALE mapping so that lower wall is
represented at time t by the graph of the smooth
function

X2 = sin (0.5 t) (cos (π X1) + 1)/4, (27)

X1 ∈ [−1, 1], t ≥ 0.

This movement is interpolated inside the domain,
which results in the ALE mapping. Then the do-
main velocity is computed. We start from a con-
stant initial condition prescribed in the straight
channel Ω0. The initial and inlet Mach number is
0.1. During the computational process the Mach



number achieves the maximal value 0.395. The
time step used in the numerical experiment was
τ = 0.05 and in the stability condition we use
CFL=83.

In Figure 2 we show the flow patterns in the
channel represented by pressure isolines at time
instants t = 12.773, t = 15.973, t = 17.173, t =
19.773, t = 21.973. The computed solution is pe-
riodic and although the flow is inviscid, a vortex
is formed after the lower wall starts to descend.
This vortex is then convected out of the domain
through the outlet.
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