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ABSTRACT 
The aeroelastic modeling and flutter 

characteristics of a wing/store under follower force 
is considered.  The aeroelastic governing equations 
and boundary conditions are determined via 
Hamilton’s variational principle.  In order to 
exactly consider the spanwise location and 
properties of the attached store and follower force 
the generalized function theory is used. Also, 
unsteady aerodynamic pressure loadings are 
considered. The result partial differential equations 
are transformed into a set of eigenvalue equations 
through the extended Galerkin’s approach. 
Numerical simulation highlighting the effects of the 
follower force and store parameters, such as mass 
ratio and attached locations, on the flutter speed 
are presented.  the numerical results for the clean 
wing subjected to a follower force are validated 
with the published results and excellent agreement 
is observed. 

1. INTRODUCTION 
It is well known that aeroelastic instability may 

be induced in elastic systems because of non-
conservative forces. The high-thrust engine 
mounted on the aircraft wing is a good example for 
acting neoconservative follower forces on the 
airplane structure. One of the most dramatic 
aeroelastic phenomenons is flutter, a dynamic 
instability which often leads to terrible structural 
failure in airplane components. By the fact that 
nowadays the importance of weight saving in flight 
vehicles increases the structural flexibility of the 
aircrafts, the effects of the thrust and store mass on 
the flutter speed may be very important.  

The problem of a cantilever wing/store excited by 
a transverse follower force has not received much 
attention in the literature. Much of previous efforts 
have been made to simulate aeroelasticity of the 
wing have consider uniform straight wings. Como 
(1966) analyzed the stability of bending-torsional 
equilibrium of a cantilevered beam subjected at its 
end section to a lateral follower force. Restricting 
the location of the force and rigid body to the free 
end, Feldt and Herrmann (1974) investigated the 
flutter instability of a wing subjected to the 
transverse follower force in the presence of airflow. 

Aeroelastic stability of a swept wing with tip 
weights for an unrestrained vehicle is considered by 
Lottati (1987). The equations for a cantilevered thin 
beam are derived by Dowell et al (1974).They 
examined the possibility of controlling through 
feedback a thin cantilevered beam subjected to a 
nonconservative follower force. Gern and Librescu 
(1998) have made some efforts to show effects of 
externally mounted store on static and dynamic 
aeroelasticity of advanced swept cantilevered 
wings. Hodges et al (2002) show the effects of 
lateral follower force on flutter of cantilevered 
wings. However, in their work they did not take into 
account the concentrated weight effects. Some 
studies in recent years dealt with nonlinear flutter 
analysis of wing/store configurations without 
follower forces. In these works nonlinear structural 
and/or dynamical terms are investigated such as 
work done by Thompson and Strganac (2005).  
Most recently, an experimental model with a 
wing/store configuration with and without freeplay 
has been designed by Tang and Dowell (2006) for 
the study of flutter and LCO. According to the best 
of the authors' knowledge, in the available 
literature, aeroelastic analysis of the wings 
containing a mass subjected to the follower force 
have not yet been presented. It is the purpose of the 
present investigation to combine the follower force 
and the store effects, studied separately before. 

2. GOVERNING EQUATIONS 
The cantilever wing containing a mass subjected 

to a lateral follower force as shown in Fig.1.a is 
considered. The wing typical section is represented 
in Fig.1.b where  are the distances between 
the center of gravity of the store and the elastic axis 
of the wing. The wing is thinking as a thin beam 
and the structural model is used which incorporates 
bending-torsion flexibility. The store inertia as well 
as the follower force is accounts for in deriving the 
governing equations. These equations of motion are 
valid for long, straight, homogeneous, isotropic 
wings undergoing moderate displacements. Because 
of the wing flexibility two coordinate systems have 
been used here. As shown in Fig. 1 the orthogonal 
axes  are fixed on airplane base body in 
which the
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X axis lies in the spanwise direction. The 



other coordinate system xyz  has been fixed on 
deformed wing. 
(a) 

 
(b) 

 
Figure 1: The geometry and nomenclature of a 
wing/store configuration under follower  force. 
After wing deformation the shear center of cross-

section located at x is displaced an amount of  in 
x direction,  in y direction and w in z direction. 
Additionally the angle of twist of the cross-section 
changes to 

ou
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θ  about the x axis. The coordinate 
transformation should be used between these two 
coordinates to derive governing equations. 
Assuming that the wing can be represented by a 
cantilever beam, the boundary conditions are as 
follows: at , that is at the root of wing, 
deflection and slope are both zero (clamped end); at 

, that is at the wing tip, moment and shear 
forces are both zero (free end). By using these 
boundary conditions, the aeroelastic governing 
equations will be solved. The equations of motion 
and boundary conditions are derived using 
Hamilton's variational principle that may be 
expressed as: 

0=x

lx =

0][
2

1

=−−−∫
t

t
sw dtWTTU δδδδ  (1) 

where  and U T  are strain energy and kinetic 
energy and W  is the work done by non-
conservative forces. The indices  and w s  identify 
the wing and externally mounted store, respectively. 
The first variation of kinetic energy of the wing is: 
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The first variation of the store kinetic energy also 
can be derived as: 
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The strain energy is considered next. The first 
variation of the strain energy is: 
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where H and δ  are Heaviside and Dirac delta 
functions, respectively. The virtual work of non-
conservative forces acting on the wing may be 
expressed as: 
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Substituting the expressions for kinetic energy, 
strain energy and non-conservative works in Eq.(1) 
the aeroelastic governing equations are obtained as: 
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In these equations the Heaviside and Dirac delta 
functions are used in order to exactly consider the 
location and properties of the lateral follower force 
and the attached store, respectively and the index s 
identifies the affiliation of the respective quantity to 
the external store. It is important to note in these 
equations it is assumed that follower force acts on 
the store and apply exactly in the chordwise 
direction of the wing. L  and M  are unsteady 
aerodynamic lift and moment as below: 

[ ]θωπρ θlbwlbL w +−= /23  (8) 

[ ]θωπρ θmbwmbM w += /24  (9) 

 
In Eqs.(8,9) and  are the 

aerodynamic coefficients as displayed by Hodges 
and Alvin Pierce (2002) and 
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ρ  is the air density. 



3. METHOD OF SOLUTION  
Due to intricacy of the aeroelastic governing 

equations, the solution is searched by using an 
approximate solution procedure. To this end, θ,w  
are represented by means of series of trial functions 

iϕ , that should satisfy the boundary conditions, 
multiplied by time dependent generalized 
coordinates, . Consequently, the displacement 
quantities are expressed as: 
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Due to the complex boundary conditions and 
complex couplings involved in the above equations, 
it is difficult to generate proper comparison 
functions that fulfill all the geometric and natural 
boundary conditions. Therefore, in order to solve 
the above equations in a general way, the extended 
Galerkin’s method is used. The underlying idea of 
this method is to select weight functions that need 
only fulfill the geometric boundary conditions, 
while the effects of the natural boundary conditions 
are kept in the governing equations. When the linear 
combination of these weight functions is capable to 
satisfying the natural boundary conditions, the 
convergence rate is usually excellent. 

By substituting Eqs.(8-10) in Eqs. (6,7) and 
applying the Galerkin procedure on the governing 
equations and by using orthogonal properties in the 
required integrations the following set of ordinary 
differential equations are obtained:   
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Herein, [M], [K] and denote the mass 
matrix, stiffness matrix and nonconservative load 
vector respectively, while q  is the overall vector of 
generalized coordinates. This representation finally 
leads to a complex eigenvalue problem expressed in 
matrix form as 
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where A denotes the (real) stiffness matrix of the 
wing and B is the (complex) matrix representing the 
inertia terms of wing and external store as well as 
the complex aerodynamic parameters. The real part 
of the complex valued quantity ω  represents the 
circular frequency of the oscillation, whereas its 
imaginary part constitutes the damping factor. The 
implemented solution methodology is based upon 
the inversion of the complex matrix and 
subsequent calculation of complex eigenvalues and 
eigenvectors of the obtained system matrix . 
The flutter speed is calculated in a converging 
iteration process rendering zero the imaginary 
(damping) part of the complex eigenvalues.  
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4. NUMERICAL RESULTS  
As stated in the previous section, the solution to 

this aeroelastic problem through extended Galerkin 
method is sought by using a numerical integration 
scheme. The effects of the store location and the 
follower force value on the flutter speed of 
cantilever wings are simulated.  

Pertinent data, for the particular wing-weight 
combination used here are the same as those utilized 
by Harry et al (1949) and are considered in table.1. 
The store mass is equal to and its mass 
moment of inertia is . 

Kg578.1
Kg0185.0

Wing parameters  Dimension
Length 1.2192 m 

Semi-chord 0.1016 m 
Bending rigidity 403.76 2mN −  
Torsional rigidity 198.58 2mN −  

Mass per unit length 1.2942 m/kg
Moment of inertia 0.0036 mkg −

Spanwise elastic axis 43.7% m 
Center of gravity of wing 45.4% m 

Air density 1.224 3m/kg  
Table 1: characteristics of the wing  

 
Dimensionless parameters are used in the 

numerical simulation is: 
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Where  is the store mass, l  is the wing 
length, is the mass per unit length of the wing, 

is the wing semi-chord, is the air speed and 

SM
m

b ∞U
θω is the first uncoupled torsional frequency. Here, 

the vertical distance between the center of gravity of 
the store and the elastic axis of the wing is equal  
zero. For model validation purpose the results for 
the wing without store are compared in Fig. 2 with 
Hodges et al (2002) and good agreement is 
reported. To this end the same wing characteristics 
as them are chose. In this figure flutter boundary for 

10=λ  is illustrated. It is seen that there is a 
continue decrease in flutter speed accompanying the 
increase in the follower force. This can be explained 
as the addition of the follower force destabilizes the 
wing and leads to instability at lower speeds. Figure 
3 shows a parametric study investigating the effect 
of λ on the flutter boundary of the clean wing. It can 
be seen that there is a continuous decrease in the 
magnitude of thrust required for instability with 
increase in airspeed. This is happened because the 
destabilizing effect of the aerodynamic forces added 
to the system. This leads to instability at lower 



levels of the follower force. It is seen that the 
stability region is quite different for lower values of 
λ as compared to the higher ones. This comes from 
the interactions between the thrust and aeroelastic 
destabilization mechanism.  

Effect of store mass on flutter boundary of the 
wing/store is illustrated in Fig.4. The store is 
assumed to place at the tip and exactly on the elastic 
axis of the wing. It can be seen that the stability 
region of the wing is limited when the store is 
attached to it. This is almost independent of the 
mass ratio parameter . For low values of air 
speed, the flutter speed increases, but, when the air 
speed is increased furthers the mode of instability 
changes from a dominant follower force mode to 
dominant aeroelastic instability. 
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The frequency and damping of the clean wing 
affected by a tip follower force are sketched in Fig. 
5 for  . It can be seen from Fig.5 (a) that 
the flutter is occurred due to intersection of the first 
bending mode with the second bending mode. It is 
clear from the Fig.5 (b) that the corresponding 
damping for this point is zero. Fig.6 shows the 
frequency and damping for the same configuration 
of the wing with . It can be understood from 
this figure as the store mass becomes greater, the 
intersection point corresponding to the flutter 
condition moves to left. This means that flutter 
occurs in smaller values of the follower force and 
the stability region is limited.  
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Influence of the spanwise location of the store on 
flutter speed of the wing for selected values of the 
follower force is shown in Fig. 7. It is important to 
note that follower force acts on the store and apply 
exactly in the chordwise direction of the wing. In 
this case the mass ratio is . In the absence of 
the follower force the least value of the flutter speed 
takes place around . So one can say that 
this point is the critical location for store mounting. 
This behavior is also observed by Gern and 
Librescu (1998). Including the follower force it can 
be seen in this figure that increasing the distance of 
the store from the wing root will decrease the flutter 
speed. This is more apparent for greater values of 
the follower force. For  an unusual behavior is 
observed. This can be qualitatively explained as the 
increase of the destabilizing effect of the follower 
force leading to instability, even at zero air speed. 
Dimensionless flutter speed of the wing is sketched 
in Fig.8 versus the dimensionless spanwise location 
of the store for several values of the store mass 
ratio. The store is mounted on elastic axis and the 
dimensionless follower force is . Its clear from 
the figure that increasing the store mass decreases 
the flutter speed of the wing. It is important to 
notice that although results subjected to each mass 

ratio is unique, trend of results are the same for all 
cases.  
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Figure 2: Validation of flutter boundaries. 
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Figure 3: Flutter boundaries for values  of  λ  with 
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 Figure 4: Flutter boundaries  for values of  

with 
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Figure 5: Frequency  and damping ratios vs  

follower force for ,  and . 1=SX 0=SY 0=∗
SM
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Figure 6: Frequency  and damping ratios vs  
follower force for ,  and . 1=SX 0=SY 1=∗
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Also it can be observed that in presence of the 
follower force the critical location of the store, in 
the sense of dynamic stability, is the tip of the wing. 

This fact is independent of store mass. Influence of 
the chordwise location of the store on flutter speed 
of the wing for different values of store mass ratios 
is showed in Fig.9. The store is located at the tip of 
the wing and the dimensionless follower force 
is 9.0=p . It is observed that chordwise location of 
the store contributes different aeroelastic behavior 
for the wing with or without follower force. Sliding 
the store toward the front of the wing will increase 
the flutter speed in the case of the wing carrying the 
tip mass subjected to the follower force. This 
phenomenon is inverted in the absence of the 
follower force. Figure 10 shows the effect of non-
dimensional chord-wise location of the store on the 
wing flutter speed for selected values of the 
follower force acting on the tip weight 
with .  It shows that the flutter speed is 
increases by sliding the store toward the front of the 
wing. In addition, from this plot it is also possible to 
infer about the effects of the follower force on wing 
flutter speed. The result shows that a continue 
decrease of flutter speed accompanies an increase of 
the follower force, implying that the follower force 
decreases the flutter speed of the airplane. 
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Figure 7: Flutter speed vs spanwise  position of 
follower force and  store for  and . 0=SY 1=∗
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Figure 8: Flutter speed vs spanwise position of  
follower force and store for  and 0=SY 2=p . 
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Figure 9: Flutter speed vs chordwise position of  
follower force and store for  and 1=SX 90.p = . 
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5. CONCLUSION 
The complete aeroelastic equations for an 

isotropic aircraft wing carrying external store which 
subjected to follower force are formulated. The 
developed model is based on rigidity of the attached 
store. These equations are valid for long, straight, 
homogeneous wings undergoing moderate display-
cements. In order to exactly consider the spanwise 
location and properties of the attached store and 
follower force the Heaviside and Dirac delta 
functions are used. Results are indicative of the 
important influence of the store location and 
follower force on flutter speed of the wing/store. 
The chordwise and spanwise location of the store 
and the magnitude of the follower force affect the 
stability region of the wing dramatically.  
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