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ABSTRACT

When immersed in an axial flow, a cantilevered
plate can spontaneously exhibit flutter above a
critical value of the flow velocity. If we sup-
pose that there is no tensile effect (such as the
gravity or the viscous stress) and that the visco-
elastic damping in the elastic plate is negligible,
this flag-type instability is entirely governed by
three dimensionless parameters: the reduced flow
velocity, the mass ratio and the aspect ratio of the
plate. So far, the stability analysis found in the
literature have assumed a two-dimensional prob-
lem corresponding to a plate of infinite span (Ko-
rnecki et al, 1976; Watanabe et al, 2002b). In the
present study, we explicitly take into account the
effect of the finite plate span.

1. INTRODUCTION

In his seminal paper on the instability of jets,
Lord Rayleigh (1879) suggested that his theoret-
ical approach could be used to show that an in-
finite flag is always unstable. Indeed, it can be
proved easily that an elastic plate of infinite di-
mension (both in the span- and streamwise direc-
tion) is always unstable when immersed in an ax-
ial potential flow. However, this fluid-structure
interaction problem becomes far more complex
mathematically when the finite dimensions of the
flag are explicitly taken into account.

Using analytical tools of airfoil theory, Kor-
necki et al (1976) have shown that a plate of infi-
nite span but finite chord was stable for flow ve-
locities below a critical velocity (in the following,
we will use the term plate instead of flag to em-
phasise the importance of the finite density and
finite bending stiffness of the material). Kornecki
et al (1976) assumed an elastic plate and used
two different theoretical approaches to model the
flow around this plate. They first assumed a po-
tential flow with zero circulation. Then, using a
method introduced by Theodorsen (1935), they
added a distribution of vorticity in the plate wake
to smooth out the trailing edge singularity of the

pressure field. This results in an unsteady cir-
culatory flow. More recently these approaches
have been used again with better computer ac-
curacy (Huang, 1995; Watanabe et al, 2002b).
Another theoretical approach has been used by
Guo and Päıdoussis (2000). They solved the two-
dimensional problem (assuming infinite span) in
the Fourier space for a potential flow.

An important aspect of these theoretical mod-
els is the way they deal with the flow at the
boundary conditions. Kornecki et al (1976) in
their zero-circulation model had pressure singu-
larities both at the trailing and the leading edge.
The use of the Theodorsen (1935) theory in the
second model of Kornecki et al (1976) suppresses
the trailing edge singularity by the use of the
Kutta condition. In the theoretical model of Guo
and Päıdoussis (2000) the pressure distribution
problem is solved in the Fourier space assuming
implicitly no singularities. This means that an
incoming “wake” has to be added to the flow
to suppress the leading edge singularity. This
“wake” cannot be justified on physical grounds.

Shayo (1980) first attempted a three-
dimensional stability analysis to understand
the dependence of the critical velocity on the
plate span. In his study, he made several math-
ematical assumptions to simplify the calculation
that led him to conclude that a flag of infinite
span is more stable than a finite one. This
latter result is in contradiction with a slender
body approach (Lighthill, 1960; Datta and
Gottenberg, 1975; Lemaitre et al, 2005).

Experiments with plates made of metal, pa-
per or plastic sheets have been carried out by
Taneda (1968), Datta and Gottenberg (1975),
Kornecki et al (1976) and more recently by Ya-
maguchi et al (2000); Watanabe et al (2002a);
Shelley et al (2005); Souilliez et al (2006) (see
the book of Päıdoussis, 2004, for a comprehen-
sive list of references). These experiments showed
that the flutter modes observed at threshold are
always two-dimensional. They also showed that
the instability threshold is always larger than the
theoretical predictions. The work of Watanabe



et al (2002b) shows that the critical velocity mea-
sured in the experiments is at least twice as large
as the analytical and numerical predictions for
all experimental parameters. So far, no satisfac-
tory explanation of this apparent discrepancy has
been given.

Cantilevered plates in axial flow have also been
modelled numerically by Watanabe et al (2002b),
Tang et al (2003), Balint and Lucey (2005) and
Tang and Päıdoussis (2006). In these studies,
a two-dimensional solver based on the Navier-
Stokes equations or on a vortex method has been
combined to a beam model for the plate. The
critical velocities obtained with these numerical
simulations are similar to the results of Kornecki
et al (1976) and Guo and Päıdoussis (2000).

In this paper, we present an analytical stabil-
ity analysis of an elastic plate immersed in an
axial uniform flow. The analysis assumes a one-
dimensional flutter motion (as it has been ob-
served in the experiments so far), but takes into
account explicitly the finite span and chord of the
plate to calculate the surrounding flow.

2. STABILITY ANALYSIS

2.1. Equation of motion

We consider a deformable rectangular plate,
clamped at its leading edge and free at its side
and trailing edges. The plate chord is L, its
span H and its thickness hp is assumed to be
negligible in such a way that its flexural rigidity
D = Eh3

p/12(1 − ν2) remains finite (where E is
the Young’s modulus and ν the Poisson ration).
As shown in Figure 1, the plate lies in the OXY
plane and the wind of velocity U is parallel to
OX. Assuming a one-dimensional deformation
of the plate, its lateral deflection W is a function
of the chord coordinate X and the time T only.
For small deflection W , the dynamics obeys the
linearised Euler-Bernoulli beam equation forced
by the fluid load

m
∂2W

∂T 2
+D

∂4W

∂X4
+ 〈δP 〉Y = 0, (1)

where m is the mass per unit area of the plate
δP (X,Y ) is the pressure difference between its
two sides and 〈.〉Y denotes the average along the
span for −H/2 < Y < H/2.

Equation (1) is valid as long as viscoelastic ma-
terial damping and tension due to viscous stresses
are negligible. The above equation is made di-
mensionless using L/2 as characteristic length
along X and Z, H/2 as characteristic length
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Figure 1: Schematic of the plate subject to a one-
dimensional deflection.

along Y and U as characteristic velocity. Using
lowercase letter for dimensionless quantities, we
have

x =
X

2L
, y =

Y

2H
, w =

W

2L
, t =

2UT
L

, (2)

and equation (1) becomes

∂2w

∂t2
+

4
U∗

∂4w

∂x4
+
M∗

2
〈δp〉y = 0, (3)

where p is the dimensionless pressure, U∗ the re-
duced velocity and M∗ the mass ratio given by

p =
P

ρU2
, M∗ =

ρL

m
, U∗ =

√
m

D
LU, (4)

with ρ the density of the surrounding fluid. Note
that the problem is entirely governed by three di-
mensionless parameters: the critical velocity U∗,
the mass ratio M∗ and the plate aspect ratio

H∗ =
H

L
. (5)

2.2. Galerkin decomposition

Equation of motion (1) becomes linear if p is lin-
ear with respect to w (this is the case if the flow
is supposed to be potential). In this case, we can
assume a Galerkin decomposition of the lateral
deflection and switch to the frequency domain
such that the deflection w can be written as

w(x, t) =
N∑

n=1

anwn(x)eiωt + c.c., (6)

where c.c. denotes the complex conjugate, N is
the truncation of the Galerkin expansion and
wn are the beam eigenfunctions in vacuo satis-
fying the free boundary-condition at the trailing
edge and a clamped boundary-condition at the



leading edge (see Päıdoussis, 1998, 2004). Note
that these Galerkin modes satisfy the relation
w

(4)
n = k4

nwn, where kn are wavenumbers sorted
in ascending order.

To solve the equation of motion (1) using the
Galerkin expansion (6), one needs to determine
the pressure jump δpn(x, y) associated with the
deflection wn(x) at angular frequency ω. This
will be done in the next section.

Upon defining the standard scalar product as

f ⊗ g =
1
2

∫ 1

−1
f(x)g(x)dx, (7)

the Galerkin modes satisfy the orthogonality con-
dition ym ⊗ yn = δn

m, where δj
i is the Kronecker

delta. By multiplying Eq. (1) by the modes wm,
the equation of motion becomes a system of N
linear equations with N unknowns (the ampli-
tudes an). The solvability condition imposes

det
(
−ω2I +

4
U∗2
Q+

M∗

2
P
)

= 0, (8)

where I is the N×N identity matrix, Q is the di-
agonal matrix with the elements k4

n in ascending
order on its diagonal and

Pmn(ω) = ym ⊗ 〈δpn〉y, (9)

where pn is the pressure field associated to the
Galerkin mode wn with same frequency depen-
dence. Note that the matrix P is a function of ω
as it will be shown below.

For a given mass ratio M∗ and dimensionless
velocity U∗, the solvability condition (8) has 2N
solutions ωi corresponding to each flutter mode.
The frequencies of the flutter modes are simply
given by <(ωi) and their growth rates by σi =
−=(ωi). To determine the stability of the plate
flutter, one now needs to calculate the matrix P
and search the velocity U∗ needed to have at least
one flutter mode with a positive growth rate.

3. THREE-DIMENSIONAL FLOW

In the section, we follow the calculations and no-
tations of Guermond (1990) and Guermond and
Sellier (1991) done in the context of the lifting-
line theory. The main difference comes from the
fact that we are treating different limits.

3.1. Inverse problem

Assuming a potential flow, the pressure field is
given by the linearized form of the Bernoulli law

which in dimensionless form can be written as

pn(x, y, z) = −
(

iω +
∂

∂x

)
φn, (10)

where φn(x, y, z) is the velocity potential at fre-
quency ω. Provided the perturbation pressure
vanishes at x = −∞, the differential operator
(iω + ∂/∂x) can be inverted and gives

φn = −
∫ 0

−∞
eiωvpn(x+ v, y, z)dv. (11)

From these relations, it is evident that the prob-
lem can be formulated equivalently in terms of
φn or pn which are both potential fields. From a
pratical point of view, the pressure formulation is
better because it is continuous everywhere except
across the plate and it allows to obtain directly
the field seeked.

The pressure field satisfies the following equa-
tions

∆pn = 0, (12)

∂pn

∂z
= −

(
iω +

∂

∂x

)2

wn on S, (13)

pn = 0 at the trailing edge, (14)
pn → 0 at infinity, (15)

where the Laplace operator takes the following
form because of the different scales in the span-
wise and chordwise direction

∆ =
∂2

∂x2
+

1
H∗2

∂2

∂y2
+

∂2

∂z2
. (16)

The Neumann boundary condition (13) on S the
surface of the plate comes from the continuity of
the normal velocity. Equation (14) is the Kutta
condition and allows for a unique solution of the
problem.

Using Green representation theorem and fol-
lowing Guermond and Sellier (1991), the deflec-
tion wn and the pressure jump δpn can be related∫ 0

−∞
eiωv

∫∫
S

δpn(ξ, η) dξ dη dv[
(x− ξ + v)2 +H∗2(y − η)2

]3/2

= − 4π
H∗

(
iω +

∂

∂x

)
wn, (17)

for (x, y) on the surface of the plate S. Here, the
surface integral as to be taken in the finite-part
sense as introduced by Hadamard (1932) and
summarized in Guermond (1990) or otherwise,
the integral would diverge. The above equation



is a Fredholm equation of the first kind which has
to be inverted in order to calculate the pressure
jump δpn. For a given aspect ratio H∗, this in-
version can be accomplished numerically. In the
present paper, we will detail an analytical inver-
sion in the limit of a slender plate, i.e. H∗ � 1.

3.2. Slender-body limit

In the limit of small aspect ratio, the inverse
problem (17) can be simplified into(

iω +
∂

∂x

)2

wn =
1

4π

∫ 1

−1
I(x, ε) dη, (18)

where

I(x, ε) =
∫ 1

−1

γ(ξ, η)
(x− ξ)2

εdξ

[ε2 + (x− ξ)2]1/2
, (19)

and

γ = −∂δpn

∂y
, ε = H∗(y − η)� 1. (20)

An expansion of I(x, ε) can be calculated in the
limit of small ε using the method of matched
asymptotic expansion. After some calculation,
it gives

I(x, ε) = −2
ε
γ(x, η) + ε ln 2 γ′′(x, η)

+ ε

∫ 1

−1

γ(ξ, η) dξ
|x− ξ|3

+O(ε3), (21)

where the prime denotes differentiation with re-
spect to x and the integral has to be taken in the
finite-part sense. Injecting this expansion into
the integral equation (18) gives(

iω +
∂

∂x

)2

wn =
1

4π

∫ 1

−1

∫ 1

−1
γ(ξ, η)

× K(x− ξ, y − η) dξ dη, (22)

where K is the kernel of the Fredholm equation
which can be expressed as an expansion in H∗

K(x, y) = −2δ(x)
H∗y

+H∗ ln 2 δ′′(x)y

+H∗
y

|x|3
+O(H∗3), (23)

where δ(x) is the Dirac delta.
At first order in H∗, the solution of (22) is

γ0 = 2H∗
y√

1− y2

(
iω +

∂

∂x

)2

wn, (24)

which gives after y-integration and averaging

〈δp(0)
n 〉y =

πH∗

2

(
iω +

∂

∂x

)2

wn, (25)

as predicted by the slender-body theory of
Lighthill (1960). The next order correction is
found by injecting the above solution into (22)
and gives

〈δp(1)
n 〉y =

H∗2

4

(
ln 2〈δp(0)

n 〉′′y +
∫ 1

−1

〈δp(0)
n 〉y

|x− ξ|3
dξ

)
,

(26)
where again the last integral is taken in the finite-
part sense. So the total average pressure jump
takes the form

〈δpn〉y = 〈δp(0)
n 〉y + 〈δp(1)

n 〉y +O(H∗5). (27)

The method described here can be carried out up
to any order in H∗ without difficulty.

4. CONCLUSION

The work presented here is still in progress. This
explain why no quantitative results are presented
at this moment. However, the method used here
and inspired from lifting-line theory seems very
promising and will probably help to gain knowl-
edge in the flutter instability of plates or flags.

The present work will also help to clarify and
validate the hypothesis made in the Fourier anal-
ysis of Eloy et al (2007) and whose main results
are summarized in figure 2.
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