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ABSTRACT 
Two-dimensional fluid flow around an oscillating 

circular cylinder in elliptic motion at Reynolds 
number 300 is investigated numerically for different 
oscillation frequency and orbit ellipticity. An 
original fully coupled numerical method is used for 
simulating the non-stationary flow. Occurrence of 
lock-in, characterized by a large jump of 
fundamental quantity values, is observed and lock-
in regions are determined. Under lock-in 
conditions, mean lift coefficient pre-sents negative 
and positive values. The variations of fluctuating lift 
and mean drag coefficients show different behavior 
and slope of curves change with ellipticity. Curve of 
fluctuating drag coefficient widely changes and 
maximum value is not reach for the highest lock-in 
frequency, like the other fundamental quantities, but 
for a frequency all the more small since the 
ellipticity is large. 

1. INTRODUCTION 
Study of flow past a circular cylinder is of special 

interest for basic understanding of the aerodynamics 
of aeroelastic phenomena. Despite the simplicity of 
geometry the flow around a cylinder is very 
complicated and of particular importance, since it 
may induce unsteady forces on structures associated 
with vortex shedding. Unsteady forces acting in 
both directions, in-line and transversal, represented 
by drag and lift coefficients respectively, can induce 
structure vibrations. Bodies oscillate in response to 
these forces, possibly in linear or orbital motion. In 
such cases the vortex shedding properties will 
change resulting in quite different lift and drag 
periodic fluctuations in time.  

Most of the research efforts in the past have been 
concentrated on cross-flow oscillations since time-
varying component of the lift force is usually an 
order of magnitude larger than that corresponding to 
the drag force. Cross-flow oscillating cylinder in 
uniform flow has been fairly widely researched, 
Williamson and Roshko (1988), Meneghini and 
Bearman (1995), Mittal and Kumar (1999), as have 

in-line oscillating cylinder in uniform flow, Griffin 
and Ramberg (1975), Nobari and Naderan (2006), 
Al-Mdallal et al. (2007), or oscillatory flow, 
Bearman et al. (1985). A cylinder subjected to 
forced oscillation exhibits the phenomenon of lock-
in: the vortex-shedding frequency of the oscillating 
cylinder changes to the frequency of cylinder 
vibrations, Koopmann (1967).  

As already mentioned, the cylinder oscillations 
are predominantly in transversal direction, but in the 
majority of situations the cylinder follows a closed 
elliptic orbit, combination of in-line and transverse 
oscillations. However, there is relatively little 
investigation carried out for a cylinder in circular or 
elliptic motion. Among others, Chen et al. (1995) 
investigated numerically the orbital flow around a 
stationary cylinder; Williamson et al. (1998) studied 
experimentally a cylinder forced to follow an 
elliptic orbit; Stansby and Rainey (2001) carried out 
numerical investigation of the flow around a 
circular cylinder in circular motion in a current. 
Lewis (2006) investigated the orbital motion of a 
circular cylinder in a uniform flow using a vortex 
cloud flow modeling and compared its results with 
Baranyi (2004). Baranyi (2004) (2008) studied the 
flow around an orbiting cylinder at different 
ellipticity values from in-line to circular motion, 
employing a grid-based Eulerian type method for 
solving the two-dimensional Navier-Stokes 
equations. Abrupt jumps were found in the time-
mean and root-mean-square (rms) values of the 
force coefficients caused by a critical change in the 
vortex structure. 

The present study deals with an elliptic motion of 
a circular cylinder in a uniform flow at Reynolds 
number 300. Previously, Didier and Borges (2007) 
investigated the uniform flow around a circular 
cylinder in forced transverse, in-line and circular 
oscillation. Lock-in phenomenon is identified in all 
three cases. For circular orbit, the authors identified 
that slope variation of mean drag and fluctuating lift 
coefficients, under lock-in condition, has modified 
comparing with that obtained for transverse 
oscillation, indicating that this alteration is due to 
the longitudinal component of the motion. In the 



present study, computations are carried out for 
various elliptic orbits. Ellipticity is varied from 0.0, 
a pure cross-flow oscillation, through a circular 
orbit, for ellipticity equal to 1.0. Oscillation 
frequency is varied over a broad range around the 
natural vortex-shedding frequency. The flow field 
changes significantly with oscillation frequency and 
orbit ellipticity and manifests in the forces experi-
mented by the cylinder and the Strouhal number. 

Computational investigations are performed 
considering an unsteady two-dimensional flow for 
an incompressible viscous fluid. Numerical simula-
tions are carried out using an implicit second order 
fully coupled resolution method developed by the 
author (see Didier and Borges (2003)).  

2. NUMERICAL METHOD 
The numerical code FullCReM solves the 

unsteady, incompressible, two-dimensional Navier-
Stokes equations, without any transformation of the 
continuity equation, Didier (2008). In the precedent 
version of the code, a pressure equation has been 
reconstructed, Didier and Borges (2003). This new 
approach is an alternative to classical segregated 
and coupled methods. 

A finite volume method with collocated cell-
centered unknowns is used to discretize the 
equations for structured or/and unstructured grids. 
Time-dependent solution of these equations requires 
using an implicit time-integration scheme: 
momentum equations are integrated with a three-
level second order time scheme. The spatial 
discretization schemes are implicit too. Diffusion 
terms are approximated by second-order central-
differences scheme. Newton linearization is applied 
to the convective terms and velocities are 
approximated by the deferred correction method, 
using UDS (first-order) and WACEB (third-order) 
schemes for the implicit and explicit part. Pressure 
at the midpoint face of the control volume is 
approximated by a second-order linear 
interpolation. For non-orthogonal grids, discrete 
schemes required corrections to estimate velocity 
and pressure to the face midpoint of the control 
volume. These explicit corrections, added to the 
source terms, are assumed to be small compared to 
the implicit part of the schemes. 

The discretized continuity and momentum 
equations are solved simultaneously using the 
iterative algorithm Bi-CGSTAB-ω with an 
incomplete LU pre-conditioning. The present 
resolution method does not require any dual-time 
scheme like in the artificial compressibility or 
pressure correction methods, or any relaxation 
parameters. Whereas segregated methods lead to a 
sequential resolution of discrete equations, the fully 
coupled resolution method solves only one linear 

system in velocity-pressure and allows reducing the 
number of non-linear iterations needed to converge. 
For details of numerical method, see Didier and 
Borges (2003) (2007), Didier (2008). 

Figure 1 show the computational domain used to 
the present simulations. A grid refinement study 
made revealed that an O-grid with 200 and 180 
nodes respectively in angular and radial direction, 
with a first grid-point near to the wall situated at 
5.10-4D is well adapted to the simulation of flow at 
Reynolds number Re=300. D is the cylinder 
diameter. A radius equal to 50D ensures that 
external boundary effects are sufficiently 
minimized. The non-dimensional time step is equal 
to 5.10-3. The flow over the cylinder at Re=300 is 
considered laminar. 

A no-slip condition is applied to the cylinder wall 
and free-stream velocity is imposed at the external 
boundary. The motion of the centre of the cylinder 
is specified as follows: 

uo1(t)=ue1 cos(2 ω fe1 t) (1) 

uo2(t)=ue2 sin(2 ω fe2 t) (2) 

where ue1, ue2 and fe1, fe2 are the non-dimensional 
amplitude velocity and frequency of cylinder 
motion in longitudinal and transversal direction. 

 

 
Figure 1: Computational domain. 

The 2-D numerical code developed by the author 
has been extensively tested against experimental 
and computational results for fixed and oscillating 
cylinders and good agreement has been found, as 
can be seen in Didier and Borges (2003) (2005) 
(2007), Didier (2007) (2008), Baranyi (2008).  

3. COMPUTATIONAL RESULTS 
A goal of this work is to achieve a deeper 

understanding of the mechanisms that are involved 
in the alteration of the forces acting on a circular 
cylinder in elliptic orbit in uniform flow. With the 
aid of numerical simulations, mean and fluctuating 
drag and lift coefficients, and Strouhal number are 
calculated and presented. 

Frequencies in longitudinal and transversal 



direction are the same, fe = fe1 = fe2, and are in phase. 
Velocity amplitude in the transversal direction, ue2, 
is equal to 10% of the free-stream velocity, Uo. 
Velocity amplitude in the longitudinal direction 
varies from 0 to 10% of the free-stream velocity in 
increment of 2%. Thus the cylinder describes a pure 
cross-flow motion, when ue1=0.0, a circular orbit, 
when ue1=0.1Uo, and an elliptic motion for other 
values of ue1. Ellipticity, E, is defined as the ratio 
between the velocity amplitudes of the motion: E= 
ue1/ ue2.  

The data related to the stationary cylinder, Didier 
and Borges (2007), are shown in the figures by a 
dashed line and are defined as natural or reference 
values. The mean drag and lift coefficients are 
1.352 and 0.0 respectively. The rms drag and lift are 
equal to 5.3x10-2 and 0.62 respectively. The 
Strouhal number is equal to 0.214. 

Figure 2 shows Strouhal number variations with 
frequency and ellipticity. The Strouhal number is 
defined considering the predominant frequency in 
the spectrum, obtained by a Discrete Fourier 
Transform. Lock-in band is identified by the 
linearity relation ship between frequency oscillation 
and Strouhal number. Figure 3 presents where lock-
in occurs, i.e. when there is only one significantly 
dominant frequency. Figure 4 shows spectrum for 
ue1=0.08 and ue2=0.10 for the oscillation frequency 
range from 0.1950 to 0.2210. As can be seen, lock-
in occurs between oscillation frequencies equal to 
0.1975 and 0.2140. Before and after theses 
frequencies, power spectrum presents two dominant 
frequencies: the oscillation frequency and the 
shedding frequency and eventual combination of 
theses two frequencies. 

The shedding frequency is globally smaller than 
the reference value for a fixe cylinder, fo=0.214, 
except when lock-in occurs for frequencies higher 
than fo. The lock-in bandwidth is all the more 
reduced since the ellipticity is large. For ellipticity 
equal to 0.8 and 1.0, the inferior and superior 
frequency limits, where lock-in occurs, are 
significantly reduced, compared to pure cross-flow 
oscillation. The superior limit moves near the 
natural vortex shedding frequency fo. In all cases, 
minimum value of Strouhal number is obtained for 
the lowest lock-in frequency and the maximum for 
the highest lock-in frequency. 

Figures 5 and 6 show the mean and rms lift 
coefficients versus the oscillation frequency. 
Figures 7 and 8 present the mean and rms drag 
coefficients.  

It can be observed from all figures that as has 
been reported by various authors, the cylinder 
motion alters the flow field significantly. This effect 
manifests in the aerodynamic forces experienced by 
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Figure 2: St versus the oscillation frequency. 
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Figure 3: Simulation points for elliptic cylinder 

motion versus oscillation frequency: lock-in does 
not occur (∆) and lock-in occurs (♦). 

Frequency

Po
w

er
Sp

ec
tr

um

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

1.2

Oscillation
frequencyf e=

0.
19

75

f e=
0.

22
10

f e=
0.

21
75

f e=
0.

19
50

f e=
0.

20
00 f e=

0.
20

35

f e=
0.

20
70

f e=
0.

21
05

f e=
0.

21
40

 
Figure 4: Power spectrum of fluctuating lift for 
orbit ellipticity E=0.8 and oscillation frequency 

between 0.1950 and 0.2210. 

 
the cylinder and the Strouhal number. 

Figures 5 and 6 show the mean and rms lift 
coefficients. If the mean CL is zero for cross-flow it 
is not the case  for  elliptic  and  circular  oscillation. 
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Figure 5: Mean lift coefficient versus oscillation 

frequency. 
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Figure 6: rms lift coefficient versus oscillation 

frequency. 

 
For frequencies lower or higher than the natural 
frequency and throughout the lock-in bandwidth, 
the mean CL is positive and all the more large since 
the ellipticity increases. The rms lift is similar or 
slightly lower than the natural lift fluctuation for 
oscillation frequencies lower than the lock-in band 
frequencies, but, for higher frequencies, rms lift 
presents values around 10% larger than the 
reference value. When lock-in occurs, a large jump 
is observed in mean and rms lift variation. 
Figures 7 and 8 show the mean and rms drag 
coefficients versus the oscillation frequency. For 
frequencies lower or higher than the natural 
frequency, throughout the lock-in bandwidth, the 
mean CD is similar to the natural one. A large jump 
occurs for lock-in frequencies with minimum and 
maximum values of mean drag around ±9% the 
natural reference value. The rms drag coefficient is 
globally greater than the natural value, all the more 
large since the ellipticity increases. Under lock-in 
conditions, variation of fluctuating drag coefficient 
depends on the ellipticity. 
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Figure 7: Mean drag coefficient versus oscillation 

frequency. 
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Figure 8: rms drag coefficient versus oscillation 

frequency. 

 
Figure 9 shows details of mean and fluctuating 

forces under lock-in conditions. Behaviors are 
different for each fundamental quantity. If Strouhal 
number variations are linear for all ellipticity 
values, it is not the case of the other quantities.  

The beginning of the lock-in is characterized by a 
type of crisis, called here "lock-in crisis": a sudden 
jump can be observed  in CD mean, CD and CL rms 
at all ellipticity values defining the lowest and 
highest lock-in frequency, called fe

L and fe
H 

respectively. For CD mean and CL rms, minimum 
and maximum values are reached for the lowest and 
highest lock-in frequency respectively. These 
fundamental quantities increase with oscillation 
frequency, i.e. the slope of curves is positive. For 
example, curve of CL rms is positive, but for small 
ellipticity E=0.0, 0.2 and 0.4 CL rms always 
increases, whereas it converges to a maximum value 
for E=0.8 and 1.0. Shape of CD mean is rather 
different: for E=0.0, quasi-linear variation with 
oscillation frequency is  observed  whereas  the CD  
mean  variation tends  to a curvilinear pattern all the 
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Figure 8: Details in the lock-in zone. 

 
more the ellipticity increases, except for circular 
orbit. In this case, maximum value is reached before 
fe

H and slope of the curve is negative for the highest 
lock-in frequency. Fluctuating drag coefficient 
presents a similar behavior comparing with mean 
CD. For transversal motion, when ellipticity E=0.0, 
CD rms shows a linear variation with oscillation 
frequency, and maximum fluctuation is reached 
near fe

H. However, slope and pattern of curves are 
widely modified with increasing ellipticity: 
variation of CD rms is all the less linear since the 
ellipticity increases. The maximum value is not 

reached for the highest frequency, like CD mean and 
CL rms, but for a lower frequency than fe

H, all the 
more lower since the ellipticity increases. 
Interestingly, the initial slope of curves CD mean 
and CD rms are roughly identical (not show here). 

Mean CL coefficient presents an unexpected 
behavior under lock-in conditions. Mean CL is equal 
to zero for pure cross-flow motion but show 
positive values when ellipticity is not zero, even if 
ellipticity is small, except for the low lock-in 
frequencies. Mean lift is negative for oscillation 
frequencies lower than a critical oscillation 
frequency equals to 0.207-0.208 and positive for 
frequencies higher than this critical value. Thus, for 
this critical frequency, the mean lift coefficient is 
zero. The maximum value of mean lift coefficient is 
reached for the highest lock-in frequency. However, 
the minimum mean lift does not correspond to the 
lowest lock-in frequency, but to a frequency 
between fe

L and the critical frequency. It can be seen 
that minimum mean lift decreases and maximum 
increases all the more the ellipticity increases. 
Interestingly, CL mean is unchanged for frequencies 
slightly higher than the lowest lock-in frequency: 
for E=0.8, lock-in occurs from fe=0.1975, but mean 
CL is changed only from fe=0.2, after lock-in begins.  

4. CONCLUSION 
Unsteady flow past a circular cylinder in elliptic 

motion at Re=300 is studied numerically, using a 
original fully coupled resolution method, developed 
by the author, where the continuity equation is 
solved in its original form. The cylinder motion is 
gradually transformed from a transverse to a 
circular motion, with intermediate elliptic orbits. 
The present numerical investigation shows that: 
- the vortex-shedding frequency of the oscillating 

cylinder changes to the frequency of cylinder 
vibrations when lock-in occurs; 

- lock-in band-with decreases when orbit 
ellipticity increases; 

- large jumps occur at the beginning and at the 
end of the lock-in. 

Under lock-in conditions: 
- slope and shape of curves of mean CD and CD 

rms coefficients is widely modified when 
ellipticity increases, from linear to fully 
curvilinear shape. However, the initial slopes of 
these curves are roughly identical. 

- slope and shape of CL rms curve changes with 
ellipticity too; 

- mean CL shows negative and positive values for 
frequencies lower and higher, respectively, than 
a critical frequency, around 0.207-0.208. For 
this critical frequency, mean CL is equal to zero 
for all ellipticity values. Negative and positive 
values are all the more large since the orbit 



ellipticity increases. 
So, increasing orbit ellipticity of a circular 

cylinder induces a global increase of fundamental 
quantities. However, it seems that maximum values 
of mean CD and CD and CL rms tend to limit values. 
It is not the case of mean CL that already increases 
with ellipticity. Initial slopes of CD mean and CD 
and CL rms, for lowest lock-in frequencies, are all 
the more large since negative mean CL decreases, 
when orbit ellipticity increases. However maximum 
values of these coefficients seem all the more 
limited since positive mean CL is large, when orbit 
ellipticity increases.  

Other numerical simulations must be carried out 
and a deeper investigation is needed to understand 
and connect these phenomenons. 

5. REFERENCES 
Al-Mdallal, Q.M., Lawrence, K.P., Kocabiyik, S., 
2007, Forced streamwise oscillations of a circular 
cylinder: locked-on modes and resulting fluid 
forces. J. Fluids and Structures, 23:681-701.  

Baranyi, L., 2004, Numerical simulation of flow 
past a cylinder in orbital motion. J. Computational 
and Applied Mechanics. 5(2): 209-222. 

Baranyi, L., 2008, Numerical simulation of flow 
around an orbiting cylinder at different ellipticity 
values. J. Fluids and Structures (in press).  

Bearman, P.W., Downie, M.J., Graham, J.M., 
Obasaju, E.D., 1985, Forces on cylinders in viscous 
oscillatory flow at low Keulegan-Carpenter 
numbers. J. Fluid Mechanics, 154: 337-356. 

Chen, M.M., Dalton, C., Zhuang, L.X., 1995, Force 
on a circular cylinder in an elliptical orbital flow at 
low Keulegan-Carpenter numbers. J. Fluids and 
Structures, 9: 617-638.  

Didier, E., and Borges, A.R.J., 2003, Unsteady 
Navier-Stokes equations: A fully coupled method 
for unstructured mesh. In Proc. Conference on Mo-
delling Fluid Flow, 814-821. Budapest, Hungary. 

Didier, E., and Borges, A.R.J., 2005, Numerical 
simulation of two-dimensional cross-flow past a 
cylinder using an unstructured mesh based fully 
implicit second order coupled method. In Proc. 4th 
European & African Conference on Wind 
Engineering. Praha. 

Didier, E., 2007, Flow simulation over two circular 
cylinders in tandem. Comptes Rendus Mécanique, 
335: 696-701. 

Didier, E., and Borges, A.R.J., 2007, Numerical 
predictions of low Reynolds number flow over an 
oscillating circular cylinder. J. Computational and 
Applied Mechanics. 8(1): 39-55. 

Didier, E., 2008, Convergência assimptotica das 
quantidades fundamentais na modelação numérica 
do escoamento em torno de um cilindro circular. In 
Proc. II Conf. Nacional de Métodos Numéricos em 
Mecânica de Fluidos e Termodinânica. Portugal. 

Griffin, O.M., Ramberg, S.E., 1975, Vortex 
shedding from a cylinder vibrating in line with an 
incident uniform flow. J. Fluid Mech., 75: 257-271. 

Koopmann, G.H., 1967, The vortex wakes of 
vibrating cylinders at low Reynolds numbers. J. 
Fluid Mech., 28: 501-512. 

Lewis, R.I., 2006, Application of the vortex cloud 
flow modelling to cylinders in orbital motion at low 
Reynolds numbers and comparisons with some 
published grid-based CFD predictions. In Proc. of 
Conference on Modelling Fluid Flow, 157-164. 
Budapest, Hungary.  

Meneghini, J.R., Bearman, P.W., 1995, Numerical 
simulation of high amplitude oscillatory flow about 
a circular cylinder. J. Fluids and Structures, 9: 435-
455. 

Mittal, S., and Kumar, V., 1999, Finite element 
study of vortex-induced cross-flow and in-line 
oscillations of a circular cylinder at low Reynolds 
numbers. Int J Numer Meth Fluids, 31: 1087-1120. 

Nobari, M.R.H. and Naderan, H., 2006, A 
numerical study of flow past a cylinder with cross 
flow and inline oscillation. Computers Fluids, 35: 
393-415. 

Stansby, P.K., Rainey, R.C.T., 2001, on the orbital 
response of a rotating cylinder in a current. J. Fluid 
Mechanics, 439: 87-108. 

Williamson, C.H.K., Roshko, A., 1988, Vortex 
formation in  the wake of an oscillating cylinder. J. 
Fluids and Structures, 2: 355-381.  

Williamson, C.H.K., Hess, P., Peter, M., 
Govardhan, R., 1998, Fluid loading and vortex 
dynamics for a body in elliptic orbits. In Proc. 
Conference on Bluff Body Wakes and Vortex-
Induced Vibration.Washington, DC, USA. 


	INTRODUCTION
	NUMERICAL METHOD
	COMPUTATIONAL RESULTS
	CONCLUSION
	REFERENCES

