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ABSTRACT

With an an analytical model coupling a mixing
layer flow with an oscillating vegetation canopy
through a drag force, we show that for both the
cases of wind over a wheat field and a water
stream over aquatic plants, the dynamics of the
plants is responsible for increasing the growth
rate of the coupled instability in the lock-in range
through two mechanisms. Because the flow and
the vegetation canopy move in phase and thus
minimise their interactions, the drag dissipation
is decreased. The correlation between the two
components of the perturbation flow velocity in
the mixing layer is increased and make the per-
turbation flow more efficient at extracting energy
from the mean flow.

1. INTRODUCTION

The focus of this paper is the strong coupling
between the dynamics of a fluid flow such as the
wind or water current and that of a plant canopy.
By plant canopy, we mean a large collection of
individual plants such as a dense forest, a crop
field, or an aquatic plant cover. The perspective
we take on the plants is focused on the canopy as
a whole; we perceive the canopy as a poroelastic
continuum (de Langre, 2008).

Understanding the mechanisms of interactions
between flow and a plant canopy is crucial in
predicting and avoiding wind-induced damage
to forest and crops. Such an understanding
is also essential to properly model the heat,
mass and momentum exchanges between plants
and the atmosphere (Finnigan, 2000) or between
aquatic plants and the water stream they thrive
in (Ghisalberti and Nepf, 2006).

The structure of the wind over a vegeta-
tion canopy is dominated by a Kelvin-Helmholtz
(KH) instability due to the difference of air ve-
locity above and inside the canopy (Raupach
et al., 1996). A similar phenomenon is observable
in aquatic flows over fully-submerged vegetation
(Ghisalberti and Nepf, 2002). The KH instability
which is due to the presence of an inflection point

in the velocity profile (Ho and Huerre, 1984) en-
genders coherent eddies of canopy scale which
dominate the turbulent motion of the canopy
flow. When the vegetation canopy is flexible,
these coherent eddies are responsible for wavelike
motions at the canopy top. These wavelike mo-
tions are called honami on crop fields and mon-
ami on aquatic plants.

Py et al. (2006) showed with on-site experi-
ments using an image-correlation technique that
honami occurs at the free-vibration frequency of
the plants. They also proposed an analytical
model which couples a mixing-layer flow with
a vegetation canopy free to oscillate. The two-
dimensional conservation of momentum equa-
tions are coupled to the canopy oscillator equa-
tion through a drag term. This linear model pre-
dicts a lock-in mechanism similar in form, but dif-
ferent mechanically to what is observed in vortex-
induced vibration (de Langre, 2006). By compar-
ing their experimental observations and the theo-
retical predictions of their model, Py et al. (2006)
concluded that “it is thus the lock-in mechanism
suggested by the analysis of the coupled model
that explains why the coherent wave-motion of
the crops occurs at their eigenfrequency indepen-
dently of [the wind velocity]”.

The aim of the present study is to understand
the dynamical interactions between the mixing
layer and the vegetation canopy through which
the growth rate of the coupled system is in-
creased. To do this, we revisit the linear analyt-
ical model developed by Py et al. (2006) which
couples the oscillator equation of a stalk of wheat
with a perturbed broken line horizontal wind pro-
file through a drag force. We improve slightly
the model by not requiring the irrotationality as-
sumption in the flow solution and in order to
broaden the applicability of the model, we ac-
count for the free surface in the case of submerged
aquatic plants.

The article is organised as follows: In Section
2, the model is derived and the energy method is
briefly recalled. In Section 3, the stability anal-
ysis is performed on two cases: wind on a wheat



field and shallow aquatic flow over submerged
vegetation. The study of each case is followed
by a comparative dimensionless analysis based on
the mass number.

2. COUPLED MODEL

We revisit the linear analytical model developed
by Py et al. (2006) which couples a mixing-
layer flow with an oscillating vegetation canopy
through a drag force. Let us consider the stabil-
ity of a 2-dimensional inviscid and incompressible
flow of fluid of density ρ over a uniform vegeta-
tion canopy of height h as depicted in Fig. 1. Its
velocity and pressure fields, Vx(x, y, t), Vy(x, y, t)
and P (x, y, t), are governed by the Euler equa-

tions on which an external body force ~f acts.
This body force is caused by every plant in the
canopy and therefore depends on the movement
of each individual plant. If we assume that the
spacing between the plants ℓ is regular and small
as compared to the length scale of the pertur-
bations in the flow, we can treat the numerous
plants as a continuum. Taking the horizontal
displacement of the canopy as X(x, y, t) we can
write the body force acting on the fluid inside the
canopy as
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1

2
ρ
CDd

ℓ2

∣

∣

∣

∣

Vx −
∂X

∂t

∣

∣

∣

∣

(

Vx −
∂X

∂t

)

~ex, (1)

where the product CD × d is a dimensional drag
coefficient assumed to be uniform along the plant
height and independent of the flow velocity. It is
set to zero outside the canopy (y > h). On the
flow field, we apply a boundary condition of no
penetration at the ground and a different con-
dition at the top of the domain depending on
the system: for the wind-wheat system, vanish-
ing vertical velocity at infinite height; and for the
aquatic plant system, a free surface at height H.

To model the inflectional mean flow velocity
profile, we impose a basic flow Ub(y) which takes
the form of a piecewise linear velocity profile de-
fined by a vorticity thickness δ and two velocities:
U1 and U2 (see Fig. 1).

To model the canopy motions, we use sepa-
ration of variables X(x, y, t) = χ(y)Q(x, t) and
consider only the fundamental mode of vibration
of the plant stem χ(y) = y/h. Upon projection of
this mode on the drag force acting on one plant,
and upon neglecting both structural and contact
damping, we can write the equation governing
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Figure 1: Schematic of the modelled wind pro-
file and crop canopy. Image reproduced from Py
et al. (2006).

the dynamics of the canopy as

m
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0

~f · ~ex dy, (2)

where ω0 and m are the frequency and the modal
mass of the first mode of the plant stem.

To do a dimensionless analysis, we define the
mass number, the drag-to-shear ratio, the rela-
tive distance of the mixing layer from the ground,
the shear parameter, the reduced velocity and the
Froude number as

M =
m

ρhℓ2
, C =

CDdδ

ℓ2
(1 − R), h̄ =

h

δ
,

R =
U1 − U2

U1 + U2

, UR =
U

δω0

, FR =
√

U2/gH,

(3)

where the scale and timescale are t̄ = tU/δ and
x̄ = x/δ and where U = (U1 + U2) /2 is the aver-
age velocity.

We investigate the stability of the basic hori-
zontal velocity Ūb, to small perturbations of ve-
locity ū, v̄, pressure p̄, and modal plant defor-
mation q̄. Upon non-dimensionalizing the Euler
equations and the oscillator Eq. 2, we can substi-
tute the perturbation scheme and keep only first
order quantities to obtain
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where we recall that in Eq. 4, C is zero out-
side the canopy (ȳ > h̄). We seek a solution
to Eqs. 4-7 in the form of a travelling wave

(ū, v̄, p̄, q̄) = (û, v̂, p̂, q̂) ei(k̄x̄−ω̄t̄) + c.c., where k̄
and ω̄ are the dimensionless axial wavenumber
and complex frequency and where c.c. stands for
complex conjugate. For the sake of clarity, the
overbars on k̄ and ω̄ are omitted from here on.

An analytical general solution to Eqs. 4-6 is
found in each y-subdomain corresponding to the
three pieces of the mean piecewise velocity pro-
file (see Fig. 1). On these three general flow
solutions, we apply seven conditions: the verti-
cal velocity and the pressure must be continuous
at the two cuts ȳ = h̄ and ȳ = h̄ + 1, the solu-
tion must respect the travelling-wave form of the
boundary conditions, and the oscillator equation
7 must be satisfied. We write these seven condi-
tions on the general solution as a linear operator

[

L
(

UR, C,M,R, h̄, ω, k
)]

{

~A
}

= {0} , (8)

where ~A represents the 7 integration constants
of the general shape functions. We obtain the
dispersion relation of the admissible complex fre-
quencies ω with the wavenumbers k by taking the
determinant of L equal to zero. For a given value
of k, the corresponding complex values of ω are
found with a Müller iterative procedure.

The model described above is essentially that
of Py et al. (2006) but differs in three points: we
use a different non-dimensionalization, we intro-
duced the free-surface boundary condition, and
most importantly we do not assume the flow irro-
tational. In Py et al. (2006), to simplify the ana-
lytical flow solution and obtain a dispersion rela-
tion in the form of a polynomial of ω, the flow was
assumed irrotational although the canopy drag is
clearly dissipative. Because of that assumption,
their flow solution did not respect the govern-
ing Euler equations. Upon comparing the most
unstable complex frequencies predicted with and
without the irrotationality assumption, we found
that the effect of this assumption on the dynam-
ics of the system is quantitative but not qual-
itative. For all the results presented here, the
irrotationality assumption is not made.

To improve our insight of the flow behaviour,
we examine the perturbation flow energy. We ap-
ply the energy method described by Drazin and
Reid (1981, p. 424) to investigate the energy pro-
duction and dissipation in the perturbation fluid
flow.

The change over time of the perturbation ki-
netic energy density in the fluid is averaged over

one wavelength λ = 2π/k and summed over the
height of the domain H̄ :
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The integrand is found by multiplying the lin-
earised equations of motion of the fluid 4-5 by u
and v respectively. Upon integration, the diver-
gence terms give a zero global contribution term
to the energy balance and we are left with the
following non-null terms

∂E

∂t̄
= Ps − D, (10)

where Ps is the energy production from the
Reynolds stresses and D is the drag dissipation
of the canopy :
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The energy quantities vary in time as

(E,Ps,D) =
(

Ê, P̂s, D̂
)

e2ωi t̄ and once sub-

stituted in Eq. 10, the following identity is
immediately derived :

ωi =
P̂s

2Ê
−

D̂

2Ê
. (13)

3. RESULTS

3.1. Wind on a wheat field

The model described in the previous section is
used to investigate the instability mechanisms in
the interactions between wind and a crop canopy.
The parameters kept constant in this analysis are
given in Table 1. All values are taken from Py
et al. (2006) except the value of R which is taken
smaller to amplify the coupling effects; yet it is
still in the physically reasonable range consider-
ing the very coarse approximation a broken-line
profile represents of a real wind profile. As in Py
et al., we take δ = Rh.

We study the evolution of the temporal stabil-
ity of the system with increasing reduced velocity
UR in three configurations: the “coupled configu-
ration” where the Kelvin-Helmholtz (KH) insta-
bility in the flow interacts with the flexible plant



Wheat canopy Aquatic vegetation
M 0.74 0.0076
C 0.30 0.55
h̄ 5 0.36
R 0.2 0.55
H̄b ∞ 15

FRU−1

R N/A 0.07

Table 1: Dimensionless parameter values used in
the simulations.
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Figure 2: Frequency (a) and growth rate (b) of
the wind-wheat system: pure configuration –·–·–
; heavy configuration – – – ; coupled configura-
tion ——. The grey area marks the lock-in range.

canopy, the “pure configuration” where a pure
KH instability develops in a flow without vegeta-
tion as C is taken vanishingly small, and a “heavy
configuration” where a KH instability develops
over non-moving vegetation as M is taken very
large. For every value of UR, the most unstable
wavenumber of each scenario is considered.

The frequency of the pure configuration shown
in dash-dot line in Fig. 2 (a) is known to in-
crease proportionally to the flow velocity (Ho and
Huerre, 1984). Its growth rate, shown in Fig. 2
(b), is constant with flow velocity. The frequency
of the heavy configuration, in dash line in Fig. 2
(a), is smaller than that of the pure configuration.
In the case of the coupled configuration (solid line
in Fig. 2), for small and large reduced velocity,
the frequency and the growth rate match those
of the heavy configuration. This is so because
the natural frequency of the plants and that of
the KH instability differ greatly hence decoupling
their dynamics. For the reduced velocity range
corresponding to the grey area in Fig. 2, the fre-
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Figure 3: Energy analysis of the wind-wheat sys-
tem: · · · · ·, D̂/2Ê ; –··–··, P̂s/2Ê ; ——, ωi. The
grey area marks the lock-in range.

quency of the pure KH instability is closer to the
natural frequency of the oscillating wheat stalk
and frequency lock-in occurs. As explained by Py
et al. (2006), “in this range the frequency of the
instability locks onto the frequency of the plants
as its value approaches and follows that of the
plants.” This leads to an increase in the insta-
bility, which can be visualised as a bump in the
imaginary frequency plotted in solid line Fig. 2
(b). This imaginary frequency grows larger, yet
it remains smaller than that of the pure configu-
ration.

The instability, which is confined to the fluid
part of the system at low reduced velocity,
spreads to both the fluid and the oscillating
canopy in the lock-in range. As a result the dy-
namics of the plants is responsible for increas-
ing the rate of growth of the instability. This
is shown by considering the perturbation energy
production and dissipation in the system. The
growth rate in solid line, along with the two
terms accounting for it in Eq. 13 are plotted
in Fig. 3 : the production of kinetic energy by
the work of the Reynolds stress against the shear
(P̂s/2Ê) in dash-dot-dot line and the drag dis-

sipation (D̂/2Ê) in dotted line. The Reynolds
stresses extract energy from the shear of the ba-
sic flow and thus fuel the instability (Drazin and
Reid, 1981).

The intensification of the production of per-
turbation kinetic energy with increasing UR is
caused by more coherence in the mixing layer
h̄ < ȳ < h̄ + 1. In the lock-in range the correla-
tion between the streamwise and vertical pertur-
bation velocity components increases and has for
effect to make the perturbation flow more effec-
tive at extracting energy from the mean flow and
thus causes the small boost in energy production
P̂s/2Ê as seen in Fig. 3. On the other hand, the

decrease of the dissipation D̂/2Ê in Fig. 3 is due



to the fluid inside the canopy and the vegetation
moving in phase with one another.

It is understood that as the reduced velocity
enters the lock-in range, the most unstable per-
turbation mode reorganises such that the insta-
bility spreads to both the fluid and the oscillat-
ing canopy. As the canopy oscillates in phase
with the flow, the drag dissipation of kinetic en-
ergy is reduced and the work of the Reynolds
stresses against the mean flow shear is increased.
These two canopy-flow interaction mechanisms
contribute to making the system more unstable.

3.2. Shallow aquatic flow over submerged
vegetation

Since the same mechanism of coherent vortices
produced by the KH instability in the mean flow
was identified (Ghisalberti and Nepf, 2002) to be
responsible for generating honami and monami,
we could think that the effect of the plant dynam-
ics on the flow is similar in both system. As is
shown for the wind-wheat system in Subsection
3.1, the dynamics of the aquatic plant canopy is
responsible for decreasing the stability of the wa-
ter flow by diminishing the drag dissipation and
boosting the work of the Reynolds stresses in the
lock-in velocity range. To show this we use the
same approach to investigate the interactions be-
tween a shallow water flow and submerged vege-
tation as in the previous subsection.

The model of Section 2 is applied with the pa-
rameter values shown in Table 1 inspired by the
model vegetation made of low density polyethy-
lene film of Ghisalberti and Nepf (2002). The
added mass and the buoyancy effect are ac-
counted for in the mass number and the reduced
velocity. To simplify the analysis and minimise
the influence of free-surface waves on the dy-
namics, the height of the free surface H in our
simulations is taken larger than in the experi-
ments of Ghisalberti and Nepf so as to keep the
Froude number low. The maximum value of the
Froude number reached in the simulations here is
FR = 0.21. As in Subsection 3.1 we consider the
three configurations: coupled, pure and heavy.

The evolutions with flow velocity of the fre-
quencies and growth rates of the three configu-
rations are plotted in Fig. 4. For very small
reduced velocities, the frequency of the coupled
configuration follows that of the heavy configura-
tion, but as UR is increased to a value larger than
0.2, lock-in occurs and the growth rate surges.
The lock-in range, identified by the area in grey
in Fig. 4, begins at a very small reduced veloc-
ity and a frequency only a quarter of the natural
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Figure 4: Frequency (a) and growth rate (b) of
the aquatic plant system: pure configuration –·–
·– ; heavy configuration – – – ; coupled config-
uration ——. The grey area marks the lock-in
range.

frequency of the aquatic plants. We still call it
“lock-in” even though it does not occur around
the natural frequency of the aquatic plants be-
cause, as is shown in the following lines, it is
still the same mechanisms that are responsible
for destabilising further the system.

As in the wind-wheat system, the instabil-
ity confined to the flow at low reduced velocity
spreads to the aquatic plants in the lock-in range
and the dynamics of the plants is then responsible
for increasing the growth rate of the instability.
The increase of ωi with UR is plotted in Fig. 5 in
solid line along with the two terms of Eq. 13 that
accounts for it: (P̂s/2Ê) in dash-dot-dot line and

(D̂/2Ê) in dotted line. For both the wind-wheat
system and the aquatic plant system, two mech-
anisms are responsible for further destabilising
the flow in the lock-in reduced velocity range: a
decrease of the drag dissipation; and an increase
in the extraction of energy from the mean flow.
The lock-in mechanisms are the same in both sys-
tems, but from a glance at Figs. 2 and 4, there
are obvious differences in the behaviour of both
systems. In the next subsection we explain some
of these differences with a dimensionless analysis.

3.3. Mass number effect

In the wind-wheat system, the lock-in velocity
range is finite and sharp as shown in Fig. 2.
The most unstable frequency deviates from that
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Figure 5: Energy analysis of the aquatic plant
system: · · · · ·, D̂/2Ê ; –··–··, P̂s/2Ê ; ——, ωi.
The grey area marks the lock-in range.

of the KH instability to that of the wheat stalk
at UR = 0.9 and returns to the KH instability
frequency at UR = 2.1. For the aquatic plant
system in Fig. 4, past UR = 0.2 the frequency
deviates from the KH instability frequency and
the growth rate increases abruptly, but the most
unstable frequency does not return to the KH in-
stability frequency at higher UR and the ωi stays
high. The lock-in perpetuates over a very long re-
duced velocity range. This is due to a low mass
number. From Table 1, the wind-wheat system
has a mass number, M , almost a hundred times
larger than the aquatic plant system (not a thou-
sand times like the fluid density ratio because of
the added mass). Decreasing the mass number
tends to increase the reduced velocity range over
which the lock-in occurs (as noted by Py et al.,
2006).

On this mass number effect, a parallel can be
drawn with vortex-induced vibrations. The re-
duced velocity range over which the shedding fre-
quency in the wake of a freely oscillating bluff
body locks onto that of the body is signifi-
cantly increased by diminishing the mass ratio
(Williamson and Govardhan, 2004; de Langre,
2006). In vortex-induced vibrations, for small
enough mass ratio, lock-in persists up to infi-
nite reduced velocity similarly to what we observe
here for the aquatic plant system.

4. CONCLUSION

This model is obviously not meant as a complete
simulation of the complex interactions between
flow and a plant canopy. Because of its simplicity
this model can achieve its goal of singling out the
effects due to the coupling of the dynamics of the
plants with that of a mixing-layer flow.

For both the wind-wheat system and the
aquatic plant system, the instability confined to

the flow at low reduced velocity spreads to the
vegetation canopy in the lock-in range. The dy-
namics of the plants is shown to be responsible for
increasing the growth rate of the coupled instabil-
ity in the lock-in range through two mechanisms:
(i) because the flow and the vegetation canopy
move in phase and thus minimise their interac-
tions, the drag dissipation is decreased; (ii) the
correlation between the two components of the
perturbation flow velocity in the mixing layer is
increased and make the perturbation flow more
efficient at extracting energy from the mean flow.
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