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ABSTRACT

A phenomenological model based on the coupling
between a set of “pressure vortex oscillators” and
an acoustic field is considered to simulate the
dynamical behaviour of a corrugated pipe. The
effect of a random Gaussian dispersion of the
Strouhal number is investigated by means of non-
linear numerical time-domain simulations and
also in terms of the modeshapes of the linearized
aeroacoustical model. The results demonstrate
that such perturbations may qualitatively change
the dynamics of the model and might cause local-
ization phenomenon.

1. INTRODUCTION

In the context of aerodynamic noise generation,
a corrugated pipe open at both ends emits clear
and loud tones when air flows through it at suf-
ficiently high velocities. This tone generation
- also called whistling - is an example of flow-
excited acoustic phenomenon, in which air-flow
interacts with the longitudinal acoustic modes
of the duct to give rise to self-sustained oscilla-
tions. Due to its pratical significance in a large
variety of technical applications and its intricate
fundamental aspects, the phenomenon is being
currently studied by different authors by means
of experiments (Belfroid et al. (2007); Kristiansen
and Wiik (2007)) as well as numerical simula-
tions (Popescu and Johansen (2008)). To main-
tain the acoustic oscillations, the central physi-
cal feature is a lock-in phenomenon between the
resonant acoustic field in the pipe and a vortex
shedding process due to the passage of air-flow
over the corrugations. The aeroacoustic insta-
bility occurs when the frequency of the vortex
shedding, characterized by a Strouhal number
St, approaches the frequency of one of the nat-
ural acoustic modes of the pipe. The whistling
frequencies are the natural harmonics stemming
from the tube acoustical modes, and the modes

which actually become unstable depend on the
air-flow velocity, the tube length and corrugation
geometry.
In a recent paper (Debut et al. (2007a)), the
authors reported preliminary experiments for a
number of corrugated pipes with different diam-
eters, length and corrugation lengths. They con-
firmed most of the qualitative behaviour reported
in the literature (Petrie and Huntley (1980);
Nakamura and Fukamachi (1991)) and showed
that many features observed are not easy to ex-
plain. No simple scaling relation was found to
characterize the physical phenomenon: the oper-
ating Strouhal number based on the corrugation
pitch is in the range 0.4∼0.5 for all tested tubes.
Moreover, it was observed that the condition for
a self-sustained regime to arise concerning the co-
incidence of the vortex shedding frequency with
the frequency of one of the pipe acoustic modes
is necessary but not sufficient.
Although the mechanism behind the aeroacous-
tic instability is not yet clearly established, we
are developping conceptual models to simulate
the relevant dynamical features observed (Debut
et al. (2007b)). Our approach, which is directly
inspired by previous studies in vortex-induced vi-
bration (Facchinetti et al. (2003)), is based on
the coupling between a set of self-excited “vor-
tex oscillators”, standing for the aeroacoustic ex-
citation, and the acoustic pressure field in the
pipe. As proposed in (Debut et al. (2007b)),
several choices may be considered for the action
of the “vortex oscillators” on the pressure field.
Here, we assume that self-sustained oscillations
are driven by pressure disturbances and thus, a
set of “pressure vortex oscillators” uniformly dis-
tributed along the pipe axis is considered.
First, the model for the flow-acoustic coupled
phenomenon is presented using a representation
of the pressure field in terms of the acoustical
modes of the open-open pipe. Numerical time-
domain simulations are then performed and typ-
ical results for the nonlinear computations are



presented to illustrate how the model behaves.
Because the underlying physics may evolve in an
irregular fashion due the rather ill-defined sepa-
ration point of the vortices, the irregular corru-
gation geometry and pitch, as well as the pres-
ence of highly turbulent pipe flow, it is of in-
terest to consider the case of a random Gaus-
sian dispersion on the Strouhal number. Non-
linear numerical simulations highlight the quali-
tative changes in the dynamical behaviour. Fi-
nally, considering the linearized coupled formula-
tion, the phenomenon of localization of the nor-
mal mode shape is discussed.

2. THE COUPLED NONLINEAR
MODEL

2.1. Acoustic pressure field

The acoustic pressure p(x, t) at location x for
the case when an external force field fx(x, t) is
considered, is solution of the inhomogenous wave
equation given by

1
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∂2p

∂t2
− ∂2p
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where c is the sound speed. Considering a line of
N discrete “equivalent” pressure source Pn dis-
tributed along the pipe at N locations xn, Eq.(1)
becomes
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Pnδ′(x− xn) (2)

where δ′(x − xn) is the spatial derivative of the
Dirac function evaluated at location x = xn.

2.2. “Pressure vortex oscillator” dynam-
ics

The shedding of vortices stemming from a corru-
gation located at each x = xn is here described
phenomenologically by a non-linear Van der Pol
equation given by

P̈n+A
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]
ωsṖn+ω2

sPn = Cp′(xn, t)

(3)
and referred to as “pressure vortex oscillator”.
Parameter A controls the strengh of the non-
linear damping and parameter B is related to
the size of the stable limit cycle which is assumed
to vary with the flow velocity as V α. ωs is the
Strouhal frequency. The right-hand side forcing
term models the effect of the pressure field on the

oscillator at the oscillator location. Note that
the pressure field acts via its spatial derivative
p′(xn, t) = [∂p(x, t)/∂x]x=xn proportionnaly to
the coupling parameter C. Such coupling is in
accordance with Howes analogy, where acoustic
energy generation involves the acoustic velocity
in the source region (Hirschberg (1995)).

2.3. Computational modal formulation

To solve the coupled problem formed by Eqs. (2)
and (3), we use a modal approach in which the
pressure field is expanded as the modal series:

p(x, t) =
M∑

m=0

qm(t)Φm(x) (4)

where qm(t) are the modal amplitudes and
Φm(x) = sin(mπx/L) are the pressure mode-
shapes for a pipe of length L with both ends
opened (m ∈ N). Replacing the modal expan-
sion of the pressure field in Eqs.(2) and (3), mul-
tiplying by a modeshape Φq, integrating within
the domain [0, L] and accounting for the modal
orthogonality relation,

∫
L Φm(x)Φq(x) dx = L/2

for m=p=1,2,. . . , we finally obtain the set of
(N+M) modal ODEs
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(5)

To investigate the dynamics of the coupled non-
linear model (5), time-domain numerical com-
putations are performed using a time-step inte-
gration algorithm presented in (Hart and Wong
(1999)). Time histories and spectra of both
the pressure field and source variables are com-
puted and evaluation of the instantaneous fre-
quency and amplitude of the dominant mode is
done using the Hilbert transform (Oppenheim
and Schafer (1998)).

3. LINEARIZED MODAL
FORMULATION FOR THE COUPLED

MODEL

To derive the linearized modal formulation of the
coupled problem, we consider the case of small os-
cillations around an equilibrium state. Denoting



with a bar the mean quantitites and with a hat
oscillating quantities, pressure and vortex oscil-
lators displacement quantities are written as

p(x, t) = p(x) + p̂(x, t) (6)

Pn(x, t) = Pn(x) + P̂n(x, t) (7)

The subsitution of (6) and (7) into Eqs.(2) and
(3) leads to two sets of equations: the zero-order
equations which govern the steady state solu-
tions, and the first-order equations which gov-
ern the oscillating solutions of the coupled prob-
lem. To apply the modal projection method to
the obtained equations, both the steady and the
oscillating pressure field are expanded as modal
series:

p(x) =
M∑

m=0

qm Φm(x) , p̂(x, t) =
M∑

m=0

q̂m(t)Φm(x)

(8)
The first-order equations are in the form of:
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M∑
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(9)
Complex eigenvalues and eigenvectors of the lin-
earized formulation are obtained by assuming
harmonic solutions to the first-order equations
(9) in the usual manner (see Pierce (1981)).

4. BASIC SIMULATIONS

For the presented simulations, the pipe length
was set to L=1 m and a modal damping of 0.5%
was assumed for all acoustical modes. The self-
excited oscillators were uniformely spaced along
the pipe. Initial conditions for the vortex os-
cillators were taken as small random amplitudes
of the variables of order 10−4, all the acoustical
variables being zero. N=101 “vortex oscillators”
and M=10 modes are considered. A reference
Strouhal number St=0.4 is assumed.
Figure 1 illustrates the case of strong coupling
for which the phenomenon of frequency lock-in is
clearly observed. The following parameters are
used: A=0.005, B=0.0001, C=-200 and α=3. It
represents the instantaneous frequencies for the
acoustic pressure and oscillators variables when a
linear sweep is imposed on the “vortex oscillator”
characteristic frequency by means of an increas-
ing flow velocity. Several qualitative observations
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Figure 1: Increasing linear velocity sweep on the
characteristic frequency of the vortex oscillators
for a perfectly tuned 101-oscillator pipe. Case
for strong coupling. A=0.005, B=0.0001, C=-
200, α=3. Instantaneous frequency and ampli-
tude of the internal pressure at the oscillator lo-
cation x10=0.0982 m. The frequency of the os-
cillator has been superposed with dashed line (-
-) to highlight the lock-in stages. The dots in the
diagonal represents the Strouhal law. Horizontal
dots are for the pipe modal frequencies.
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Figure 2: Increasing linear velocity sweep on the
characteristic frequency of the vortex oscillators
for a perfectly tuned 101-oscillator pipe. Case for
weak coupling. C=-30. Same legend as in Figure
1.



assert the presence of frequency lock-in: first, the
entrainment of the “pressure vortex oscillators”
by the pressure field; then, the mutual adjust-
ment of the frequencies in a given range of flow
velocities; finally, the presence of large pressure
pulsations in these regions. Moreover, by com-
parison with the plot in Figure 2 where the case
of weak coupling is considered, one observes that
the strength and the extent of lock-in are strongly
controlled by the coupling parameter C.

5. DISPERSION ON THE VORTEX
STROUHAL NUMBER

Departure from regularity in the geometrical con-
figuration might be expected in corrugated pipes.
In such spatially extended periodic structures,
disorder might strongly influence the vortex gen-
eration, as well as the propagation of waves, by
causing the phenomenon of localization (Hodges
(1981)). Here, we allow some disorder in the sys-
tem by assuming that the vortex shedding pro-
cess differs slightly for each corrugation. Disor-
der is simulated as a random variation of the
Strouhal number defined with a Gaussian dis-
tribution. Looking at Eqs.(5), we are now con-
cerned with an ensemble of self-excited oscillators
with slightly different characteristic frequencies
interacting via the acoustic field. The question
of self-organization of the model to evolve coher-
ently with the same frequency has to be recon-
sidered. Intuitively, it may be that at least some
oscillators lock on a common frequency (and thus
contribute to the pressure field) whereas others
are nonentrained and oscillate at their own fre-
quency. Thus, the onset of a collective lock-in,
if possible, may be less predictable than for the
tuned case - depending on the distribution of the
Strouhal frequencies, the oscillator locations and
the coupling strength. In the next section, we
provide a first examination of the effect of dis-
order in the nonlinear model (5) by means of
numerical simulations. Finally, we examine the
occurence of localization in terms of the normal
modeshapes of the coupled linearized formulation
(9).

5.1. Time domain simulations

From the nonlinear dynamical point of view, we
present results of numerical simulations in Fig-
ures 3 and 4 when considering a random pertur-
bation with a standard deviation σ = 0.02 added
to the reference Strouhal number St=0.4. In
comparison with the plot at Figure 1, Figure 3
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Figure 3: Increasing linear velocity sweep on the
characteristic frequency of the vortex oscillators
for a mistuned 101-oscillator pipe. Strong cou-
pling C=-200. Standard deviation of St, σ=0.02.
Same legend as in Figure 1.
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Figure 4: Increasing linear velocity sweep on the
characteristic frequency of the vortex oscillators
for a mistuned 101-oscillator pipe. Weak cou-
pling C=-30. Standard deviation of St, σ=0.02.
Same legend as in Figure 1.
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Figure 5: Increasing linear velocity sweep on
the characteristic frequency of the vortex oscil-
lators for a mistuned 101-oscillator pipe around
the frequency of the third acoustic pipe mode.
Strong coupling C=-200. Standard deviation of
St, σ=0.02. Same legend as in Figure 1.



clearly shows some quantitative changes. Partic-
ularly, some lock-in ranges are shortened and the
threshold velocities defining the stable/unstable
character of each acoustic mode are altered. It
is observed that the velocity ranges for which an
acoustic mode is unstable are broadened (see Fig-
ure 5) and that the transitions between modal
jumps are less marked. An important decrease
in the amplitude of the acoustic pressure is also
observed between two successive stages although
amplitude maxima remains large within lock-in.
Figure 4 is obtained for the case of weak coupling
with a standard deviation σ=0.02.
Contrary to the case with identical Strouhal
number oscillators, computed time-history sig-
nals are not always stationnary. Strickly speak-
ing, the frequencies of the “vortex oscillators”
nearly adjust with the pipe natural frequencies.
In addition, several oscillators might have uncor-
related movement during an aeroacoustic insta-
bility and thus the all-to-all complete time-space
correlation between the “vortex oscillators” does
not appear necessary to explain the excitation of
the acoustic field. Indeed, it is quite reasonable
to state that lock-in still exists, because the ratio
of the instantaneous frequencies of the interact-
ing oscillators and pressure field remains approx-
imatively constant in a range of flow velocities.
These remarks are illustrated in Figure 4.
Figure 6 shows the time envelopes and corre-
sponding spectra for tuned and mistuned cases
under constant excitation. Looking at the spec-
trum for the mistuned case, one notices the pres-
ence of closely located distinct peaks distributed
in a narrow band region about a central fre-
quency, as reported in (Elliot (2005); Debut et
al. (2007a)). In the time-domain, the correspond-
ing amplitude modulation effect is observed and
can be clearly heard from the corresponding com-
puted sound. This suggests that modeling ran-
dom phenomena may be of importance. Looking
at the pressure amplitude, note the strong atten-
uation for the mistuned case. It has also been ob-
served that the entrainment of the oscillators may
be prevented for large mistuning (σ v 0.1) caus-
ing a strong attenuation for the acoustic pressure
field. As a result, mistuning appears as a stabiliz-
ing factor for the coupled system. This observa-
tion is supported by the qualitative remarks pro-
vided by Petrie and Huntley (Petrie and Huntley
(1980)) who noticed that very small differences
in corrugation shape eliminate the whistle.
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Figure 6: Time envelopes and corresponding nor-
malized autospectrum for a constant excitation
of the third mode (fs = f3). Tuned (up) and
mistuned (down) cases for a 101-oscillator pipe.
Strong coupling C=-200. Standard deviation of
St, σ=0.02.

Figure 7: First mode shape for a 101-oscillator
pipe. Strong coupling C=-200. Left: unstable
modeshape for the coupled system. Right: corre-
sponding oscillator displacements along the pipe
axis. Increasing standard deviation of St from
top to bottom. σ = 0 (up) ; σ = 0.01 (middle);
σ = 0.05(bottom).



5.2. Effect on the modeshapes

The linearized modal equations for the coupled
problem (9) enable to study the system stability
through the computation of its complex eigenval-
ues and eigenvectors. As illustrated on Figure 7
for the first mode of a perfectly tuned 101-vortex
oscillators pipe during lock-in, a global coher-
ent vibration of the vortex oscillators can easily
synchronize with the acoustic modes specifically
with the space derivative of the pressure field (see
Eq.(3)). As the degree of mistuning increases, its
effect is clearly seen on the vortex oscillators re-
sponses, localizing their action in a small region
of the pipe. For the corresponding unstable mode
of the coupled system, we observe that the neg-
ative modal damping decreases as the standard
deviation σ increases. Notice also the slight dis-
torsion for the pressure coupled modeshape as
the mistuning becomes stronger.

6. CONCLUSIONS

Based on a phenomenological model dealing with
the aeroacoustic coupling between a line of “pres-
sure vortex oscillators” with an acoustic field,
numerical time-domain simulations for a corru-
gated pipe were performed. It was found that
including random perturbation on the Strouhal
number might qualitatively change the dynam-
ical behaviour of the nonlinear model. Under
certain circumstances, the threshold values for
the instability of an acoustical mode are altered
and the model succeeds in simulating the “noisy”
sound observed experimentally for high flow ve-
locities. Considering the linearized formulation
for the coupled system, localization has been ob-
served, the acoustical modeshapes being then
slightly distorded in comparison with those for
the unperturbed case. However, it is important
to note that all our observations clearly depend
on the relative strength between the random per-
turbations and the coupling parameter magni-
tude. It is interesting to note that, in Figure
4, the qualitative evolution of the amplitude is
quite well reproduced compared to experiments.
Finally, because of the high level of turbulence
in the pipe flow and in the light of these results,
it will be interesting to include a model for the
turbulence disturbance acting on the “vortex os-
cillators”.
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