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ABSTRACT

Forced cross-flow and in-line motion of a circular
cylinder in a free stream is performed to observe
the wake and forces exerted on the cylinder. The
phase between in-line and cross-flow motions is
varied while holding amplitudes and reduced ve-
locity constant in order to show the effect of phase
variation on the wake and observed lift force. A
phase of 0 degrees, representative of observed free
vibration motions of the cylinder, displays a ’2P’
vortex shedding pattern and the relative motion of
the vortices in the wake, with respect to the cylin-
der, results in dominant third harmonic forces in
lift. If the phase between motions is changed to
135 degrees, the wake shifts to a ’2S’ shedding
pattern, and higher harmonic forces become neg-
ligible compared with forces at the fundamental
frequency of vortex shedding.

1. INTRODUCTION

Long, slender ocean structures are particularly
susceptible to fatigue damage caused by the
vortex-induced vibration of these structures.
The recent reviews of Sarpkaya (2004) and
Williamson and Govardhan (2004) explain the
fundamental problem of vortex-induced vibration
and review a number of fundamental studies as-
sociated with the problem.

In long, string-like structures, a high number
of modes makes excitation of the structure in-
evitable from excitation forces dues to vortex
shedding. Vortex shedding behind bluff bodies in
a free stream of fluid results in oscillatory forcing
of the body in both the direction of lift and the
direction of drag. The alternate shedding of vor-
tices in the wake of the body leads to a forcing
frequency in lift (cross-flow) near the frequency
of vortex shedding, while forcing frequencies in
the drag (in-line) direction occur with twice the
frequency of vortex shedding, since all vortices
shed downstream of the cylinder. Long, string-
like structures exhibit structural characteristics
such that the natural frequency in-line with the
free stream may be twice the natural frequency in

the cross-flow direction. With a structural con-
dition such that the ratio of in-line to cross-flow
natural frequency is two, the structure can un-
dergo dual resonance, where large excitations oc-
cur both in-line and transverse to the incoming
flow.

Recent studies by Dahl et al (2007) have shown
that dual resonance of an elastically mounted,
rigid cylinder in a free stream results in large am-
plitude, dominant third harmonic forces in lift,
larger in magnitude than forces at the fundamen-
tal frequency of vortex shedding. The inclusion of
large magnitude third harmonic forces in a simple
fatigue life example showed that fatigue life may
be reduced by orders of magnitude due to the
presence of these third harmonic forces. Vandiver
et al (2006) observed large amplitude third har-
monic components of stress in large scale experi-
ments with a high-mode number flexible cylinder.

Third harmonic forces were also observed in
the elastically mounted, rigid cylinder experi-
ments of Jauvtis and Williamson (2004). Flow
visualization in these experiments showed the
formation of a ’2T’ mode of vortex shedding,
where triplets of vortices were shown to form
over one half cycle of cylinder motion, with very
large cross-flow excitation of the cylinder. Vor-
tex triplets in the wake were shown to account
for third harmonic forces based on the force im-
pulse calculated from circulation in the wake.
The magnitudes of third harmonic forces in these
experiments were not large in comparison with
forces at the Strouhal frequency, consistent with
observations by Dahl et al (2007) for an in-line
to cross-flow natural frequency ratio of one.

The present study expands on the observations
from previous experiments to explain the pres-
ence of dominant third harmonic lift forces and
analyze the wake associated with these forces.
A rigid cylinder is forced to move in combined
cross-flow and in-line motion while lift and drag
forces on the body are measured. This paper
presents a subset of a large set of experiments
where the in-line amplitude of motion, cross-flow
amplitude of motion, phase between in-line and



cross-flow motion, and reduced velocity are var-
ied to determine hydrodynamic force coefficients
associated with specific motions of the cylinder.
This study describes motions of the cylinder with
fixed amplitudes and reduced velocity, varying
only the phase between in-line and cross-flow mo-
tions. Quantitative flow visualization of the wake
behind the cylinder combined with a simple po-
tential flow representation of the wake is used to
explain the presence of dominant third harmonic
forces in lift.

2. EXPERIMENTAL METHOD

Experiments were performed in a small towing
tank, 2.4 m long, 0.75 m wide, and 0.7 m deep.
Two linear motors, mounted perpendicular to
one another, were fixed to a moving carriage that
could be towed along the length of the tank at
constant speed. The test cylinder, circular in
cross section, with a diameter of 38.1 mm, was
cantilevered from the linear motors allowing mo-
tion in the in-line and cross-flow directions. A
six-axis strain gage force sensor was mounted be-
tween the linear motor cantilever and the test
cylinder in order to measure fluid forces exerted
on the cylinder. An extensive six-axis calibra-
tion of the force sensor was performed to deter-
mine the cross-coupling effects between sensor di-
rections. Digital particle image velocimetry was
performed to visualize the wake of the cylinder
under forced motions.

2.1. Test Matrix

The test cylinder is towed at a constant veloc-
ity, U, and forced with sinusoidal motions in the
cross-flow (y) and in-line (x) directions. The
non-dimensional cross-flow and in-line motions
are defined in equations 1 and 2, where ωf is
the forced cross-flow frequency, Ay is the cross-
flow amplitude of motion, Ax is the in-line am-
plitude of motion, D is the cylinder diameter,
and θ is the phase between in-line and cross-flow
motions. These equations are equivalent to the
representation of two degree of freedom motions
given by Jeon and Gharib (2001) and Jauvtis and
Williamson (2004).

y

D
=

Ay

D
sin(ωf t) (1)

x

D
=

Ax

D
sin(2ωf t + θ) (2)

Jeon and Gharib (2001) found that the phase
between in-line and transverse motion, θ, could

delay the onset of particular vortex shedding
patterns in the wake of the cylinder for varied
phases between -45 degrees and 45 degrees; val-
ues of Ay/D = 0.5 and Ax/D = 0.1 were use
in these experiments. Recent experiments have
shown that for low mass ratio cylinder motions
in a dense fluid, the free excitation of an elas-
tically mounted rigid cylinder may have much
larger amplitude motions with Ay/D ≈ 1 and
Ax/D ≈ 0.35 for the same range of phase an-
gles (Dahl et al, 2006). In the free vibration ex-
periments of Dahl et al (2007), figure eight mo-
tions of the cylinder with θ = 0 were shown to be
associated with large amplitude third harmonic
forces. The motion with dominant third har-
monic forces in Dahl et al (2007) had amplitudes
Ay/D = 0.91 and Ax/D = 0.31, with reduced
velocity Vr = 6.4. These motions are representa-
tive of the motion parameters when the cylinder
undergoes resonance in the in-line and cross-flow
directions, hence the present study holds Ay/D,
Ax/D, and Vr fixed with the values above while
varying the phase, θ, between -180 degrees and
180 degrees in increments of 45 degrees to show
the effect of phase variation on the cylinder wake
and observed hydrodynamic forces. Fig. 1 shows
the forced orbital motion of the cylinder with var-
ied θ in the reference frame fixed to the carriage.

Figure 1: Cylinder orbit shape for various phases
between in-line and transverse motions (θ) in de-
grees. Fluid flow is left to right.

3. WAKE VISUALIZATION

The phase between in-line and cross-flow motion
plays an important role in determining the for-
mation of the cylinder wake and forces exerted on
the cylinder. Fig. 2 shows the wake behind the
cylinder for θ = 0 degrees. Two points in the cy-



cle are illustrated, and one can see that the wake
is similar to a ’2P’ shedding pattern, according
to the nomenclature of Williamson and Roshko
(1988). At this particular reduced velocity, the
paired vortices of the ’2P’ shedding pattern is
not distinct, as one vortex in the pair is very well
formed, with strong, large magnitude contours
of vorticity, while the other vortex in the pair is
fairly weak in magnitude.
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Figure 2: Cylinder wake and time traces for θ = 0
degrees, Ay/D = 0.91, Ax/D = 0.31, Vr = 6.4.
Solid lines - negative vorticity. Dotted lines -
positive vorticity. Non-dimensional vorticity con-
tours show, ωD/U = ±1,±3,±5, . . ..

As observed by Jauvtis and Williamson (2004),
the ’2P’ shedding pattern is closely related to the
’2T’ pattern where additional acceleration of the
cylinder causes a third vortex to form over one
half cycle of cross-flow motion. The wake from
Fig, 2 could resemble a ’2T’ mode as well, where
the smaller magnitude vorticity is actually the
combination of two like-signed vortices, however
this cannot be distinguished from the visualiza-
tion. The important feature of this wake is the
large magnitude vortices from each vortex pair
that move around the cylinder, in close proxim-
ity, before shedding. These vortices contribute
to a large portion of the force exerted on the
cylinder. The instantaneous lift coefficient, as de-
noted by CL, is primarily a third harmonic force,
with the dominant frequency component at three
times the frequency of cross-flow motion.

At more negative values of phase between in-
line and transverse motion, the wake resembles a
similar formation of vortices, however the phas-
ing of vortex shedding changes. At values of θ
near 90 and 135, the vortex shedding pattern
changes. Fig. 3 shows the wake behind the cylin-
der with θ = 135 degrees. In this case, the mo-
tion of the cylinder is opposite to that in Fig.
2 and there is a slight downstream curvature to
the figure eight shape. This phase of motion re-
sults in the formation of a clear ’2S’ shedding
pattern, as illustrated by two distinct opposite
signed vortices that shed over one cycle of cross-
flow motion. In the ’2S’ shedding mode, a vortex
sheds on the same side of the cylinder in which
it forms, and doesn’t move around the cylinder
as in the ’2P’ or ’2T’ shedding mode. In this
case, the lift force is primarily composed of first
harmonic forces with negligible higher harmonic
components.
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Figure 3: Cylinder wake and time traces for
θ = 135 degrees, Ay/D = 0.91, Ax/D = 0.31,
Vr = 6.4. Solid lines - negative vorticity. Dotted
lines - positive vorticity. Non-dimensional vortic-
ity contours show, ωD/U = ±1,±3,±5, . . ..

At a phase angle of θ = 180 degrees, a wake
formation with two large magnitude, co-rotating
vortices forms (Fig. 4). At this phase angle, lift
forces are very large in magnitude. It is impor-
tant to note that this phase of motion is com-
pletely opposite in phase to the motion observed
in free vibrations (Fig. 2). This particular combi-



nation of amplitudes, reduced velocity, and phase
will not likely occur for the free vibration of an
elastically mounted, rigid cylinder, since this mo-
tion requires a large input of external power.

A

0 1 2 3

−1

0

1
A

y/D

A B

0 1 2 3
−0.5

0

0.5

A
x/D

A B

0 1 2 3

−5

0

5

C
L

A B

0 1 2 3

−2
0
2
4
6

C
D

Time (s)

A B

B

0 1 2 3

−1

0

1
A

y/D

A B

0 1 2 3
−0.5

0

0.5

A
x/D

A B

0 1 2 3

−5

0

5

C
L

A B

0 1 2 3

−2
0
2
4
6

C
D

Time (s)

A B

Figure 4: Cylinder wake and time traces for
θ = 180 degrees, Ay/D = 0.91, Ax/D = 0.31,
Vr = 6.4. Solid lines - negative vorticity. Dotted
lines - positive vorticity. Non-dimensional vortic-
ity contours show, ωD/U = ±1,±3,±5, . . ..

4. LIFT FORCES

Jauvtis and Williamson (2004) showed that third
harmonic forces in lift exist due to the presence
of vortex triplets in the wake of a cylinder oscil-
lating with combined in-line and cross-flow mo-
tion where the cross-flow motion of the cylinder
was very large in magnitude (Ay/D ≈ 1.5). Us-
ing quantitative flow visualization of the wake,
the impulse force on the cylinder was calculated
from the wake velocity field, illustrating the pres-
ence of third harmonic forces. We take a sim-
ilar, but simplified, approach to reconstructing
forces from the wake by considering a potential
flow wake.

The potential for the cylinder in this flow is
a combination of a time dependent free stream
combined with vortices present in the wake. Us-
ing the Blausius and circle theorems from Milne-
Thompson (1960), we define the lift force exerted
on the cylinder as in equation 3, where ρ is the
fluid density, D is the cylinder diameter, U̇ is

the free stream acceleration, Γ is the vortex cir-
culation, un and vn are the relative in-line and
cross-flow velocities of vortex n with respect to
the cylinder, and xn and yn are the relative in-line
and cross-flow position of vortex n with respect
to the cylinder. The reference frame is fixed to
the center of the cylinder such that U accounts
for in-line and cross-flow motion of the cylinder.
The force is summed over n, the number of vor-
tices present in the wake.

Fy = ρπ
D2

4
U̇+

∑
n

ρΓn(
D

2
)2

(
un(x2

n − y2
n) + 2vnxnyn

(x2
n + y2

n)2

)

(3)
The first portion of equation 3 is the ideal

added mass force, while the second portion of
the equation describes forces due to the presence
of vortices. This representation allows one to
split the hydrodynamic forces into an added mass
component and a vortex component, as suggested
in Jauvtis and Williamson (2004). The lift force
on the cylinder is a function of free stream accel-
eration, vortex strength, relative motion of vor-
tices with respect to the cylinder, and proximity
of vortices to the cylinder.

In the previous section, it was shown that for a
phase angle of θ = 0 degrees, the lift force exerted
on the body was primarily composed of a third
harmonic force while for θ = 135 degrees, the lift
force was primarily composed of a first harmonic
force. These two wakes are dominated by two
large magnitude vortices that shed over one cy-
cle of cross-flow motion, although the phasing of
the shedding is different in each case. The magni-
tude of vorticity associated with these vortices is
at least one order of magnitude larger than other
vorticity in the field. Considering only these large
magnitude vortices in the wake of the cylinder,
we can compute the location, relative velocities,
and strength of these vortices from the flow vi-
sualizations in order to calculate the derived lift
force from potential flow.

Figs. 5 and 6 show the measured hydrody-
namic lift coefficient exerted on the cylinder com-
pared with the value computed from the potential
flow simplification of the wake. Lift coefficient
values do not match perfectly since the poten-
tial flow assumption describes a two dimensional
flow while the actual experiment has three di-
mensional effects. Additionally, the phasing of
vortex shedding in the flow visualization will not
necessarily correspond with the phasing of forces
measured along the length of the cylinder, since



the correlation of vortex shedding may not be
consistent along the span. This is particularly
apparent in Fig. 6, where the trend and mag-
nitude of the potential flow force is equivalent
to the measured force, however the phasing is
slightly different.
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Figure 5: Potential flow representation of lift
force coefficient for θ = 0 degrees. Figure shows
the measured force compared with calculated
force from potential flow and the break-up of the
potential flow force into an ideal added mass force
and a vortex force.

Figs. 5 and 6 also show the calculated poten-
tial flow forces divided into an added mass force
and a force due to vortex shedding. The ideal
added mass force is only a function of the ac-
celerating fluid, thus forces must occur with the
same frequency as cross-flow motion. All higher
harmonic components of force must exist due to
vortex shedding. In Fig. 5, one can see that the
vortex force has higher harmonic components in
addition to a first harmonic component, while the
added mass force occurs at the frequency of mo-
tion. The particular phasing between these two
forces determines the total force. In this case,
the first harmonic portion of vortex force nearly
cancels with the total ideal added mass force, re-
sulting in a dominant third harmonic lift force.
This illustrates a condition where the effective
added mass (total force in phase with accelera-
tion) of the system is nearly zero and the lift force
in phase with velocity is nearly zero.

Since we have only considered the two large
magnitude vortices present in the wake in Fig. 2,
we show that it is not necessary for triplets of vor-
tices to be present in order to account for third
harmonic forces. The relative motion of the cylin-
der with respect to these two strong vortices ac-
counts for large amplitude third harmonic forces
in lift. Third harmonic forces can be caused by

both vortex triplets, as observed by Jauvtis and
Williamson (2004), and by large amplitude com-
bined in-line and cross-flow motions with ’2P’
vortex shedding.
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Figure 6: Potential flow representation of lift
force coefficient for θ = 135 degrees. Figure
shows the measured force compared with calcu-
lated force from potential flow and the break-up
of the potential flow force into an ideal added
mass force and a vortex force.

In the case of ’2S’ vortex shedding, lift forces
do not contain a large third harmonic force, as
seen in Fig. 6. In this case, vortices shed
and move directly downstream, without moving
around the cylinder. This means that vortices
do not stay in as close proximity to the cylin-
der while the cylinder moves with in-line motion.
This results in an attenuation of higher harmonic
force magnitudes, although the total lift coeffi-
cient magnitude is large due to first harmonic
forces.

5. DISCUSSION

This paper shows a small number of visualiza-
tions associated with forced cylinder motions in
combined cross-flow and in-line motion, how-
ever the phase relation between these motions is
shown to have a large impact on the observed
wake as well as the observed lift forces associ-
ated with the cylinder motions. In particular,
the ’2P’ or ’2T’ mode of vortex shedding is shown
to be associated with higher harmonic forces in
lift, while the ’2S’ mode of shedding results in lift
forces dominated by the fundamental frequency
of vortex shedding.

The ’2P’ and ’2T’ modes of vortex shedding
are characterized by the alternate shedding of
pairs or triplets of vortices where at least one
vortex crosses the cylinder wake before shedding.



For instance, in Fig. 2, frame A shows a large
magnitude, negative vortex which formed along
the top edge of the cylinder but has now moved
below the cylinder. In this process, the vortex
has remained in close proximity with the cylin-
der while the cylinder has made one in-line fluc-
tuation. The total relative cylinder motion with
respect to this vortex over one cycle of motion
results a large third harmonic force. Similar
fifth harmonic forces may exist if one considers
downstream vortices shed from the previous cy-
cle, however these vortices are not in close prox-
imity to the cylinder; hence, they will not largely
affect lift forces.

In the case of ’2S’ shedding, vortices do not
cross the wake near the cylinder, but rather shed
directly downstream of the cylinder. In this case,
the vortex moves directly away from the cylinder,
so the effect of relative velocity changes are at-
tenuated by the effect of vortex proximity to the
cylinder. This is clearly seen in equation 3, where
the lift force is a function of relative velocities
over distance from the cylinder squared.

Understanding the wake and forces associated
with these motions is essential to properly pre-
dicting forces exerted on long marine structures
that exhibit these types of motions. Although the
free vibrations of an elastically mounted, rigid
cylinder do not exhibit some of the particular
motions shown in this study, the forced motions
in this study may be seen locally along a long,
flexible cylinder such as a marine riser.

It is important to note that the motions pre-
sented in this study as representative of free vi-
brations are very limited since amplitudes and re-
duced velocity are fixed with values where third
harmonic forces are dominant. These motions are
only representative of free vibrations when the in-
line natural frequency of the cylinder is twice the
cross-flow natural frequency, a condition that dif-
fers in the experiments of Jauvtis and Williamson
(2004). Additionally, changing values of reduced
velocity and amplitude will alter the phasing of
vortex shedding and the phasing of first and third
harmonic forces exerted on the cylinder. The
phasing between first and third harmonic com-
ponents of force since peak amplitudes of force
are dependent on this phase relationship.

6. CONCLUSION

In this paper we have studied the how the vari-
ation of phase between in-line motion and cross-
flow motion of a circular cylinder in a free stream
affects the lift force on the cylinder and the wake

behind the cylinder. For particular fixed ampli-
tudes of in-line motion (Ax/D = 0.31) and cross-
flow motion (Ay/D = 0.91), with fixed reduced
velocity (Vr = 6.4), we show that a phase of 0 de-
grees corresponds to a ’2P’ vortex shedding pat-
tern with one strong vortex paired with one weak
vortex. The relative motion of the strong vortex
with respect to the cylinder results in large mag-
nitude, dominant third harmonic force in lift. At
a phase angle of 135 degrees, the wake displays
a ’2S’ shedding pattern and the relative motion
of vortices with respect to the cylinder results in
much smaller magnitude third harmonic forces,
although first harmonic forces are still large.
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