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ABSTRACT 
An earlier paper discussing a simple one 
dimensional acoustic wave equation that represents 
a Pressurized Water Reactor (PWR) inlet pump and 
pipe is re-evaluated. The original solution was 
called into question, however, this work will show 
the original solution to be correct and that it also 
has some numerical advantages. The problem 
described is a homogeneous differential equation 
with non-homogeneous boundary conditions. A 
transformation technique is applied changing the 
form of the problem to a non-homogeneous 
differential equation with homogeneous boundary 
conditions by utilizing an auxiliary function. It is 
shown that, unlike other solutions, an auxiliary 
function defined on the interior of the media is 
unnecessary. The resulting models can be utilized to 
formulate acoustic vibration loads for a Pebble Bed 
Modular Reactor (PBMR) Power Conversion Unit 
(PCU). Comparison with other literature is 
provided.  
 

1. INTRODUCTION 
Pumps, fans and compressors are a source of 
acoustic pulsations in nuclear power plants and 
other industrial systems. A pump will compress the 
fluid directly in front of its blades causing the fluid 
to expand, creating a series of expansions and 
contractions of the fluid. This acoustic energy will 
vibrate structures potentially causing material stress 
and component fatigue and resultant structural 
failure. Structural components in the PBMR reactor 
must be evaluated for their structural integrity under 
acoustic loading.  
 
Acoustic pulsations in a light water reactor core 
annulus were first examined by Penzes and later by 
Bowers and Horvay. These two studies utilized an 
equivalent body force to represent the source of the 
pump pulsations. However, they differed on the 

form of this body force. Cepkauskas sought to 
resolve this discrepancy and demonstrated that the 
use of a body force is not required. He utilized a 
technique that transformed the homogeneous 
differential equation with time dependent boundary 
conditions to one of a non-homogeneous 
differential equation with homogeneous boundary 
conditions. This technique was unique in that the 
previous authors chose auxiliary functions to make 
the boundary conditions homogeneous. This was 
shown to be unnecessary and was expounded upon 
in a paper with Fisher and Chandra. 
 
For the simple pipe acoustics, Lee & Chandra 
utilized this same technique, but unlike Cepkauskas, 
choose unique auxiliary functions to formulate the 
problem. Kye Bock Lee et al (1992) stated that Lee 
& Chandra did not meet the boundary condition 
with their chosen auxiliary functions and proceeded 
to formulated a different solution using different 
auxiliary functions. Cepkauskas also addressed this 
same simple pipe but coupled this solution with the 
reactor core annulus solution.  
 
Kye Bock Lee et al (1992 & 1994) and Jong-sik 
Cheong et al called Cepkauskas' analysis into 
question. Kye Bock Lee et al (1992) stated, 
incorrectly, that 1) Cepkauskas used a body force  
2) Lee and Chandra “missed the constraints on the 
auxiliary functions to make the boundary conditions 
homogeneous” 3) they claimed to use the improved 
technique expounded by Fisher et al. (This 
improved method was not the transformation of the 
equations but the fact that no auxiliary function is 
necessary.) The issue was complicated by the 
addition of fictitious forcing functions to the 
problem at the spring end.  
 
This analysis re-evaluates this scenario and resolves 
any discrepancies and answers any questions in 
regarding the proper acoustic models needed for the 
PBMR design. 



2. MATHEMATICAL MODEL 
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used. A similar model examining the response of 
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The transformed equations can now be placed in the 
form of a non-homogeneous equation with 
homogeneous boundary conditions by requiring: 

 
Figure 1 illustrates a pipe of length L and cross 
sectional area A with a pump having a pressure 
amplitude  and frequency 0P pω  at one end. At the 
other end an acoustic resistance exists represented 
by a spring end condition having stiffness K. The 
spring end was first introduced in the work of 
Penzes and later used by Lee & Chandra as well as 
Kye Bock Lee et al (1992).  
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Thus equation (5-a) and (5-b) become:  
0),0( =tQ               (7-a) 

 The following is a mathematical model for the 
development of acoustic pipe loading: 
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           (7-b) The one dimensional acoustic pressure   
wave equation with speed of sound  is given by: 
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2.3 Solution 

The free vibration solution is first obtained by 
setting the RHS of equation 4 to zero, assuming a 
separation of variables solution and applying 
boundary conditions (7-a) and (7-b) resulting in: 

with corresponding boundary conditions given by: 
0@ =x  tPtxP pωcos),( 0=            (2-a) 
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Differential equation 1 with boundary conditions 2-
a & 2-b provide a well defined mathematical model. 
There is no need to define unique auxiliary 
functions or to modify the forcing function to create 
a correct response.  

with frequency equation: =−
0cA

K

nρω
  

 
0

tan
c

Lnω              (8-b) 
 

The forced vibration solution is assumed to be of 
the form: 

2.2 Transformation 

A transformation equation is assumed in the form 
of: ∑= txQCtxQ pnn ωcos)(),(    (9) 

tPxgtxQtxP pωcos)(),(),( 0+=   (3) 
Required Orthogonality Conditions, as found in 
reference Lee and Chandra and Kye Bock Lee et al 
(1992 & 1994) are: 

The substitution of equation 3 into the differential 
equation 1 and boundary conditions 2 results in: 
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The integral is similar to  and results in: 2I 1I
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Substitution of equation (9) into equation (4) and 
multiply both sides by Q  and integrate over 
the length leads to: 
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Integrate  by parts twice results in: 3I
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Similarly, substitution of equation (9) into equation 
(7-b) and multiply both sides by Q  results in: )(Lm

The second term of this integral goes to zero due to 
the mode shape being zero at x = 0. Note that 
g(0)=1 in the fourth term due to equation (6-a). 
Thus this reduces to: ∑ ∑
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The subtraction of equations (11) from (10) gives: 
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 Note that the first term in brackets [ ], is the 
orthogonality condition, equation (A) and the 
second term in brackets [ ] is the othogonality 
condition, equation (C). Thus all terms on the left 
hand side of equation (12) are zero except for the 
terms n=m, thus: 
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It can be demonstrated that the second term is the 
negative Fourier expansion of the third term and 
thus cancel. This is achieved by utilizing 
orthogonality condition (A) and assuming that g(x) 
can be expanded into a generalized Fourier series 
according to equation 7 of Kreyszig, page 474. The 
denominator of this expansion is  and the use 
equation 14-b provides the cancellation. This results 
in the final solution of  
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The required integrals will now be evaluated: 
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Thus it is demonstrated that no auxiliary function is 
needed, only the restriction on the auxiliary 
function at its boundaries. This solution can now be 
simplified for the two bounding cases of an open 
end pipe and a closed end pipe. As stated in 
references Lee & Chandra and Kye Bock Lee et al, 
these solutions can be obtained by letting K = 0 and 
K = ∞ , respectively. 
 
 Thus the open end solution is given by: 
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with LCii /0πω =  and note that the integral  
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Thus the closed end solution is given by: 
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3. NUMERICAL RESULTS 
A 10 m pipe filled with helium having a speed of 
sound of 2100 m/sec and a pump exit pressure of 
.01 MPa and forcing frequency 1002πω =p  is 
examined. The density and area are taken as 1.0. 
Figure two gives the extreme open end and closed 
end pressure along the length of the pipe provided 
by equations 17 & 18. In addition the response is 
approximated using equation 16 with K=2 for open 
end and K=8E10 for the close end. It should be 
noted that, at the pump end, a numerical struggle 
exists. The boundary condition given by equation 2-
A requires a finite value while the mode shape in 
equation 8-A requires the results to be zero while 

nω  is approaching infinity in the series. This 
produces a local numerical convergence at the pump 
as discussed in Fisher et al, where it is shown by 
taking more and more terms of the series results in 
the solution approaching the required at x = 0.  0P

4. COMPARISON WITH OTHER 
SOLUTIONS 

It was suggested by Kye Bock Lee et al (1992 & 
1994) that the solution found by Cepkauskas for 

region I, inlet pipe, does not contain physical 
meaningful natural frequencies and thus is not a 
valid solution. The inlet pipe solution obtained by 
Cepkauskas, hence forth referred to as SMIRT5 is 
given by:  
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with LClj 2/0πω =  (A* notation is used to 
distinguish from Area, A) 
 
This solution is plotted in figure 4. It is seen that 
this solution does, although it has non physical 
frequencies (those of a closed end), match the 
results obtained above. Thus the solution is 
mathematically correct. It has some advantages over 
the present solution in that the eigenvalues are not 
found via a transcendental equation 8-b, but a more 
manageable equation LCjj 2/0πω = .  
 
The question arises as to why the SMIRT 5 solution 
is valid. In SMIRT 5 the boundary condition at x = 
L was based on physical reasoning, in that if the 
pump has a harmonic frequency that the gradient of 
the pressure is a constant times the forcing 
frequency. That is: 
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Comparison of equation 7-b with equation 20, and 
recognizing the present solution results in 

. Therefore it is not 
surprising the solutions are mathematically 
identical. 
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Lee and Chandra utilized the same problem 
statement as found in the differential equations (1), 
boundary conditions (2-a & 2-b) and transformation 
(3) as found in this manuscript. However, they 
chose a very simple auxiliary function whose 
second derivative is zero. Thus their equivalent  
term is zero. There exists no mathematical 
requirement that states the auxiliary function needs 
to have higher order derivatives. Their choice of 
auxiliary function will result in a correct solution; in 
fact it has some advantage in showing the time 
dependent boundary condition is satisfied. 
However, the choice of auxiliary function required 
to demonstrate that no auxiliary function is needed 
on the interior of the problem relies on  being 
non-zero. Thus the present solution and Lee and 
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Chandra's solution are numerically identical when 
one corrects two typographical errors in their 
manuscript; Lee and Chandra equation 17 should 
have nω  in the denominator and the term c , 
appearing twice in equation 24 should be replaced 
with . 
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It was stated in Kye Bock Lee et al (1992 & 1994) 
that Lee & Chandra did not meet all the required 
boundary conditions. Kye Bock Lee et al (1992 & 
1994) claimed to have the complete solution. 
However, comparing Lee and Chandra and the 
SMIRT 5 solutions with the solution above, it is 
seen that it is a cross between the two solutions. At 
first glance this appears to be a possible solution.  Present Solution for various spring constants 
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 SMIRT5 Solution  
In order to determine if their solution is correct, it 
was re-derived using their assumptions, but with the 
present technique. Their differential equation and 
boundary conditions are also identical to the present 
analysis; however their transformation equation 
added a second time dependent forcing function and 
thus required two auxiliary functions. Typically, 
each auxiliary function should have two restrictions, 
one at x=0 and one at x=L. However, they added an 
additional restraint (their equation 9) to make the 
boundary condition homogeneous.  

Figure 2 
Present Solution for open end and closed end 

The steps found in this paper were followed 
assuming Kye Bock Lee et al two auxiliary 
functions were continuous and had higher order 
derivatives. Equation 13 of this manuscript resulted 
in the evaluation of two  and , one for each 
auxiliary function. The resulting solution showed 
that one of the two auxiliary functions is eliminated, 
but not both. The original premise is that if the 
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problem is well defined, no choice of auxiliary 
function is required for the interior of the medium. 
Since both auxiliary functions do not disappear in 
the solution it is concluded the problem is ill-
defined.  

H. D. Fisher, M.M. Cepkauskas and S. Chandra, 
“Solution of Time Dependent Boundary Value 
Problems by the Boundary Operator Method”, 
International Journal of Solids and Structures, 1979, 
volume 15, pp. 607-614. 

Recall that Kye Bock Lee sited the use of the Fisher 
et. al. publication where it is clear that only one 
auxiliary function exists for each time dependent 
forcing function. In the Kye Bock Lee solution 
there are two auxiliary functions but only one time 
dependent boundary condition. It is possible that the 
problem Kye Bock Lee wanted to solve was that the 
second boundary condition (equation 2-b) should 
have an unknown amplitude with pump harmonic 
time dependency on the right hand side of equation 
2-b. This appears to be the case since their 
transformation includes this term and based on 
Fisher et al, this would also appear in the boundary 
condition. If this was the case, two auxiliary 
functions would be required. The first would be 
identical to the one found in this document. The 
second would be zero at x= 0 and 

1)()( 2
2

2 =+
∂

∂

== Lx

p

Lx

xg
K

A
x

xg ρω
. 

L. Lee and S. Chandra, “Pump Induced Fluctuating 
Pressure in a Reactor Coolant Pipe”, International 
journal of Pressure Vessel & Piping, Volume 8, 
1980, pp.407-417. 

Kye Bock Lee, In Young Im & Saug Keun Lee, 
“Analytical Prediction on the Pump-induced 
Pulsating Pressure in a Reactor Coolant Pipe”, 
International journal of Pressure Vessel & Piping, 
52 (1992), pp.417-425. 

Kye Bock Lee, InYoung Im, “An Analytical Study 
on the Pump-induced Acoustic Pressure in a 
Pressurized Water Reactor”, Nuclear Engineering 
and Design 147 (1994) 275-286. 

Jong-sik Cheong, In-young Im , Seung-min Oh and 
Se-jin Baik, “An Analytical Prediction on the 
Pump-induced Pulsating Pressure in a Pressurized 
Water Reactor” 15th International Conference on 
Structural Mechanics in Reactor Technology, Seoul, 
Korea, August 15-20, 1999, Paper JO 1/1. 5. CONCLUSION 
M. M. Cepkauskas & J. A. Stevens, “Fluid-
Structure Interaction Via the Boundary Operator 
Method”, 6th International Conference on Structural 
Mechanics in Reactor Technology, Paris, France, 
August 17-21, 1981.  Also published in the Journal 
of Sound and Vibrations, 1983, 90(2), pp. 229-236. 

It is concluded that the model utilized by 
Cepkauskas in SMIRT 5 is complete and accurate, 
has some improved numerical benefits and can be 
utilized to pursue PBMR acoustic vibrations. The 
Lee and Chandra solution is numerically equivalent. 
The Kye Bock Lee solution needs some refinement. 
Details of the proper coupling of the pipe with the 
annulus will be considered in a future paper. 

Erwin Kreyszig, Advanced Engineering 
Mathematics, Second Edition. 
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