
Flow Induced Vibration, Zolotarev & Horacek eds. Institute of Thermomechanics, Prague, 2008 

NUMERICAL STUDY OF OSCILLATORY FLOW 
PAST FOUR CYLINDERS IN SQUARE ARRANGEMENT 

 
P. Anagnostopoulos, Ch. Dikarou and S. Seitanis 

Aristotle University of Thessaloniki, 
Department of Civil Enfineering, 

Thessaloniki 54124, Greece 
 
 

ABSTRACT 
The results of a numerical study of the viscous 

oscillating flow around four circular cylinders are 
presented herein, for a constant frequency 
parameter, β, equal to 50, and Keulegan-Carpenter 
numbers, KC, ranging between 0.2 and 10. The 
cylinders were placed on the vertices of a square 
with two sides normally and two parallel to the 
oncoming flow, for a pitch ratio, P/D, equal to 2. 
The finite-element method was employed for the 
solution of the Navier-Stokes equations, in the 
formulation where the stream function and the 
vorticity are the field variables. The streamlines and 
the vorticity contours generated from the solution 
were used for the flow visualization. At low values 
of the Keulegan-Carpenter number the flow remains 
symmetrical with respect to the horizontal axis of 
symmetry of the solution domain. As the Keulegan-
Carpenter number is increased to 4 the flow 
becomes aperiodic at consecutive cycles. For KC 
equal to 6 asymmetries appear in the flow, which 
are eventually amplified as KC increases still 
further. These asymmetries, in association with the 
aperiodicity at different cycles, lead to an almost 
chaotic configuration, as KC grows larger. For 
characteristic cases the flow pattern and the traces 
of the hydrodynamic forces are presented, whereas 
the mean and r.m.s. values of the in-line and 
transverse forces and the coefficients of the in-line 
force were evaluated for the entire range of 
Keulegan-Carpenter numbers examined. 

1. INTRODUCTION 
Oscillatory flow past a circular cylinder has 

attracted the interest of researchers in recent years, 
since it provides a simplified tool for the simulation 
of flow around a cylinder immersed in a wave 
environment. The phenomenon is controlled by two 
dimensionless numbers; the Keulegan-Carpenter 
number, KC=UmT/D, and the Reynolds number, 
Re=UmD/ν, where Um is the maximum flow 
velocity, T the period of oscillation, D the cylinder 

diameter and ν the kinematic viscosity of the fluid. 
The ratio of these two numbers, β=Re/KC=D2/νT, is 
defined as the frequency parameter. 

Although numerous experimental and comput-
ational studies for oscillatory flow past a single 
cylinder are quoted in the literature, information of 
oscillatory flow past two or more cylinders is 
scarce. Oscillatory flow past two cylinders was 
examined experimentally by Williamson (1985) and 
computationally by Skomedal et al. (1989), in 
studies comprising also the investigation of 
oscillatory flow past a single cylinder. Anagno-
stopoulos et al. have studied numerically the 
oscillatory flow past two cylinders in a side-by-side 
arrangement for P/D=1.2 (2002) and P/D=2 (2005), 
and in oblique arrangement for P/D=1.41 (2003). 

In the present study the computational simulation 
of viscous oscillatory flow past four circular 
cylinders is conducted, using the finite-element 
technique. The cylinders were placed on the vertices 
of a square with two sides normally and two parallel 
to the oncoming flow, for a pitch ratio, P/D, equal 
to 2. The frequency parameter was held constant 
equal to 50, whereas the Keulegan-Carpenter 
numbers were varied between 0.2 and 10. The 
numerical solution provides a complete description 
of both the flow field and the hydrodynamic forces 
exerted on the cylinders. The vorticity contours 
were used mainly for the flow visualization, 
whereas the streamlines are shown in a few cases. 
The mean and r.m.s. values of the hydrodynamic 
forces and the coefficients of the in-line force were 
evaluated for the KC numbers considered herein 
and are presented in diagrams. 

2. THE NUMERICAL SOLUTION 
In the present study the formulation of the 

Navier-Stokes equations is employed, in which the 
stream function, Ψ, and the vorticity, ζ, are the field 
variables. In this formulation the Navier-Stokes 
equations are written as: 

ζΨ −=∇2                                                       (1) 
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The pressure distribution throughout the solution 
domain was obtained from the solution of Poisson's 
equation 
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where ρ is the fluid density. 

The time-dependent free stream velocity U(t) of 
the oscillatory flow is defined in terms of the 
maximum flow velocity, Um, as 

 
TtUU(t) m /2,sin πϕϕ ==                            (4) 

 
where t is the time interval elapsed from the 
inception of the flow oscillation. 

The numerical technique is described in full 
detail by Iliadis and Anagnostopoulos (1998). The 
solution of equations (1) to (3) yields the 
distribution of stream function, vorticity and 
pressure in the solution domain. 

From the distribution of pressure and shear on 
each cylinder the in-line and transverse forces per 
unit cylinder length, Fx

* and Fy
*, were evaluated. 

These forces were non-dimensionlized by 
 

 Fx = Fx
*/(0.5 ρ Um

2 D) and Fy = Fy
*/(0.5 ρ Um

2 D) 

3. RESULTS 
For various characteristic cases, the flow pattern 

and the time-dependent hydrodynamic forces will 
be presented. For relatively low KC values the flow 
field remains symmetrical with respect to the 
horizontal axis of symmetry of the computational 
domain, and periodic at consecutive oscillation 
cycles. If KC exceeds a critical threshold the 
periodicity of flow is not preserved at different 
cycles. If KC is increased still further asymmetries 
appear in the flow field. As KC grows larger these 
asymmetries are amplified and, in association with 
the aperiodicity at different cycles, lead to an almost 
chaotic configuration. 

In the case of a periodic flow pattern one 
oscillation cycle is adequate for the interpretation of 
the flow field and of the hydrodynamic forces, 
whereas, when the flow field is aperiodic, results at 
different periods are necessary. 

For KC≤ 2 the flow pattern is symmetrical with 
respect to the horizontal axis of symmetry of the 
computational domain, but asymmetric with respect 
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Figure 1: Flow field for KC=2 
 

to the wake axis of each cylinder, due to 
hydrodynamic interference. Figure 1 depicts the 
streamlines (top) and the vorticity contours (bottom) 
for KC=2 at t/T=9.375. Small separation bubbles 
behind the four cylinders appear in the streamlines. 
The vortices C and D are forming behind cylinder 2, 
while vortices A and B survive from the previous 
half-cycle. The time-history of the hydrodynamic 
forces exerted on cylinder 1 for KC=2 are displayed 
in Figure 2, together with the oscillating flow 
velocity. The hydrodynamic forces are periodic, 
which is compatible to the periodicity of the flow 
pattern. The in-line force is sinusoidal with zero 
mean value, whereas  the transverse force  
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Figure 2: Hydrodynamic forces and 

stream velocity for KC=2 
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Figure 4: Hydrodynamic forces for KC=4. 
Fx is shown with thin and Fy with thick line 

 
Figure 3: Vorticity contours for KC=4 

 
diverges substantially from sinusoidal. The traces of 
the in-line forces are the same for all four cylinders. 
The transverse force on cylinder 2 is of                                                                                                      

equal magnitude but opposite sign from that on   
cylinder 1, and the same applies for the transverse 
forces exerted on cylinders 3 and 4.  The vorticity 
contours for KC=4 at t/T equal to 9 and 30 are 
displayed in Figure 3. At t/T=9 the outer vortices 
are markedly larger than the inner vortices,   
whereas at t/T=30 the inner vortices are larger. The 
aperiodicity of flow reflects on the time-history of 
the hydrodynamic forces. This is evident in Figure 
4, which displays the hydrodynamic forces exerted
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Figure 5: Vorticity contours during a half-cycle for KC=6
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Figure 6: Hydrodynamic forces for KC=6 

 
on cylinder 1 for KC=4. Small fluctuations are 
observed in the amplitude of the in-line force, 
whereas the aperiodicity of the transverse force is 
more intense. The frequency of the in-line force is 
equal to the frequency of the oscillatory flow, and 
the frequency of the transverse force equals twice 
the flow oscillation frequency. The transverse 
force on cylinder 1 is negative in the greatest part 
of the record. 

The vorticity contours for KC=6 in the first half 
of the 31st cycle are displayed in Figure 5. In 
Figure 5a (t/T=30) we can detect  the vortices A-B  

and C-D in the vicinity of cylinder 2 existing from 
the previous half-cycle. In the following frames 
vortices E and F form behind cylinder 2, vortex A 
comes close to this cylinder, and vortices C and D 
enter through the gap between the cylinders. 
Vortex B moves above the upper edge of cylinder 
2, and pairs initially with vortex E and then with 
the vortex forming at the upper part of cylinder 4. 
The vortices formed at the outer edges of 
cylinders 3 and 4 at t/T=30 pair-up with the 
opposite-sign vortices forming at the same edges. 
The mutually induced velocities in the streamwise 
direction lead to increased displacement of the 
two pairs behind cylinders 3 and 4 at t/T=30.5. At 
the same instant the congestion of vorticity 
formed on cylinders 1 and 2 due to the presence of 
cylinders 3 and 4 is apparent. The time-history of 
the hydrodynamic forces exerted on cylinder 1 for 
KC=6 are displayed in Figure 6. The aperiodicity 
of the transverse force is more pronounced 
compared to that for KC=4. In the first fifteen 
cycles the mean transverse force is negative. In 
the interval between the 15th and 24th cycle the 
mean transverse force is very close to zero and it 
experiences a reduction in amplitude. From the 
24th cycle onwards the amplitude increases and the 
mean transverse value becomes negative again. 

The vorticity contours for KC=10 during the 
first half of the 31st cycle are shown in Figure 7. 
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Figure 7: Vorticity contours during a half-cycle for KC=10
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 Figure 8: Hydrodynamic forces for KC=10 
 
The flow pattern does not vary substantially from 
that for KC=6 displayed in Figure 5. The 
displacement of the two vortex-pairs behind 
cylinders 3 and 4 at t/T=30.5 is larger than those for 
KC=6. The time-history of the hydrodynamic forces 
exerted on cylinder 1 for KC=10 are displayed in 
Figure 8. Now both forces display a fully aperiodic 
character. The amplitude of the in-line force 
fluctuates substantially at different cycles, whereas 
the mean transverse force is positive in the greatest 
part of the record. 

4. MEAN AND R.M.S. HYDRODYNAMIC 
FORCES - COEFFICIENTS OF THE IN-

LINE FORCE 
The mean value of the in-line force is practically 

zero. The mean value of the transverse force for the 
cylinders of the lower row (1 and 3) for the whole 
range of KC examined is depicted in Figure 9. The 
corresponding values for  the  two cylinders  of  the 
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Figure 9: Mean value of the transverse force 

 
upper row (2 and 4) are of equal magnitude but 
opposite sign. The mean transverse force decreases 
mildly as KC increases to 4 and then increases, 
experiencing a sudden drop when KC becomes 
equal to 8. 

The r.m.s. value of the total in-line force in 
dimensionless form is defined as 
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and the r.m.s. value of the fluctuation of the 
transverse force from the mean transverse as 
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Figure 10: R.m.s. value of the in-line force 
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Figure 11: R.m.s. value of the transverse force 

 
The r.m.s. values of the in-line and transverse 

forces are presented in Figures 10 and 11. Fx (r.m.s) 
decreases with increasing KC, the decrease being 
abrupt at low KC and mild as KC becomes higher 
than 4. The r.m.s. values of the fluctuation of the 
transverse force decrease as KC increases to 2 and 
then experience an increase, with a local maximum 
at KC=8. 
Τhe total in-line force exerted on a cylinder in 

oscillating flow can be expressed as the sum of a 
drag and an inertia component. The Fourier 
averaged drag and inertia coefficients of the in-line 
force derived from this decomposition, CD and CM, 
are given by 
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where φ is the phase angle in Equation (4). The 
hydrodynamic coefficients are depicted in Figures 
12 and 13. 
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Figure 12: Drag coefficient of the in-line force 
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Figure 13: Inertia coefficient of the in-line force 

 
Similarly to the r.m.s. value of the in-line force 

CD decreases with increasing KC, the decrease 
being abrupt at low KC and mild as KC becomes 
higher than 4. CM decreases gradually as KC 
increases to 8, and then increases as KC becomes 
equal to 10. 

5. CONCLUSION 
The finite-element study conducted herein 

revealed the various features of the interactive 
oscillating flow past four circular cylinders in 
square arrangement. At values of the Keulegan-
Carpenter number lower than 4 the flow near the 
cylinders remains almost symmetrical with respect 
to the horizontal axis of symmetry of the solution 
domain. However, the flow is not symmetrical with 
respect to the wake axis of each cylinder, due to the 
interference effects. As the Keulegan-Carpenter 
number is increased to 4 the flow becomes 
aperiodic at consecutive cycles. For KC equal to 6 
asymmetries appear in the flow, which are 
eventually amplified as KC increases still further. 
These asymmetries, in association with the 

aperiodicity at different cycles, lead to an almost 
chaotic configuration, as KC grows larger. 

The frequency of the in-line force is equal to that 
of the oscillating flow, whereas the frequency of the 
transverse force is twice the oscillation frequency. 
The mean transverse force decreases mildly as KC 
increases to 4 and then increases, experiencing a 
sudden drop at KC=8. The amplitude of the in-line 
force exerted on the cylinders decreases with 
increasing KC, which reflects on the r.m.s. values of 
this force. The r.m.s. values of the fluctuation of the 
transverse force decrease as KC increases to 2 and 
then experience an increase, with a local maximum 
at KC=8. The drag and inertia coefficients of the in-
line force decrease with increasing KC, more 
abruptly the drag coefficient and mildly the inertia 
coefficient. 
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