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ABSTRACT 
Circular cylindrical shells conveying subsonic flow 
are addressed in the present study; they lose 
stability by divergence when the flow speed reaches 
a critical value. The divergence is strongly 
subcritical, becoming supercritical for larger 
amplitudes. In the present paper, a nonlinear 
theoretical model for shells with large 
displacements and a linear flow theory are coupled. 
The effects of initial geometrical shell imperfections 
are also investigated. Numerical and experimental 
results for aluminium shells subjected to internal 
fluid flow are presented, showing an excellent 
agreement between theory and experiments.  

1. INTRODUCTION 
Thin-walled circular cylindrical shell structures 

conveying fluid may be found in many engineering 
and biomechanical systems. There are many 
applications of great interest in which shells are 
subjected to incompressible subsonic flows. For 
example, thin cylindrical shells are used as thermal 
shields in nuclear reactors and heat shields in 
aircraft engines; they may also be found in jet 
pumps and heat exchangers; they are used as 
storage tanks and thin-walled piping for aerospace 
vehicles. Furthermore, in biomechanics, veins, 
pulmonary passages and urinary systems may be 
modelled as shells conveying fluid.  

Circular cylindrical shells containing subsonic 
flow are addressed in this study; they lose stability 
by divergence (which is a static pitchfork 
bifurcation of the equilibrium, exactly the same as 
buckling) when the flow speed reaches a critical 
value. According to the few available studies [see 
Amabili et al. (2003)], the divergence is strongly 
subcritical, becoming supercritical at larger 
amplitudes. It is very interesting to observe that the 
shell system has two or more stable solutions 
concurrently, related to divergence in the first mode 
or a combination of the first and second 
longitudinal modes, much before the onset of the 
pitchfork bifurcation. This means that the shell, if 
perturbed from the initial configuration, may be 

subjected to severe deformations causing failure at 
flows much smaller than the critical velocity 
predicted by the linear threshold. This indicates the 
necessity of using a nonlinear shell theory for 
engineering design. 

The literature on the dynamic stability of circular 
cylindrical shells in the presence of internal or 
external axial flows is quite extensive. The effects 
of an internal flow have been studied, for example, 
by Païdoussis and Denise (1972), Weaver and Unny 
(1973), Païdoussis (1998), Amabili and Garziera 
(2002a, b) and others. As shown by Païdoussis 
(1998) and Amabili and Garziera (2002), the effect 
of viscous forces is not particularly large for short 
shells subjected to internal flow. In the previously 
mentioned studies, linear shell theories and 
potential flow theory are used. 

The studies developed in the past for the stability 
of circular cylindrical shells in axial flow do not 
agree sufficiently well with experimental results, as 
pointed out by Horn et al. (1974). In particular, for 
subsonic Mach numbers, highly divergent and 
catastrophic instabilities have been encountered 
experimentally for clamped-clamped copper shells 
excited by a fully developed turbulent flow.  

The problem was solved for the first time by 
Amabili, Pellicano and Païdoussis (1999), who 
discovered the post-divergence strongly subcritical 
behaviour. They used Donnell’s nonlinear shallow-
shell theory and a base of seven natural modes to 
study in depth the nonlinear vibrations and stability 
of simply supported circular cylindrical shells 
conveying or immersed in subsonic flow. 
Karagiozis et al. (2008) developed a nonlinear 
model for shells with clamped ends and 
successfully compared theoretical results with 
experimental data. Experiments, confirming the 
calculations, were previously performed by 
Karagiozis (2006) and Karagiozis et al. (2005). 

For the interested reader a detailed review of 
linear and nonlinear studies is given in Amabili et 
al. (2003) and Paidoussis (2003).  

The novel features of the present study are: (i) the 
introduction of geometric imperfections, which give 
fundamental qualitative and quantitative differences 
in behaviour vis-à-vis a perfect shell; (ii) the use of 



more refined nonlinear shell theories retaining in-
plane displacements (without the introduction of a 
potential stress function), i.e. Donnell’s theory with 
in-plane displacements and the Sanders-Koiter 
theory; (iii) the introduction of non-classical 
boundary conditions that allows the exact 
simulation of the experimental conditions described 
in Karagiozis et al. (2005, 2008). 

2. NONLINEAR THEORETICAL 
MODEL 

The system under consideration is a thin circular 
cylindrical shell, of length L, mean radius R, and 
thickness h, as shown in Figure 1. The shell is 
assumed to be homogeneous and isotropic with 
Young’s modulus E and Poisson ratio ν. A 
Cartesian coordinate system is assumed, with its 
origin attached at one end of the shell, and the 
middle surface displacements in the axial, 
circumferential and radial directions are denoted by 
u, v, and w, respectively. 

 
Figure 1: Shell geometry. 
 
Two different nonlinear shell theories are 

employed to describe the shell motions. The first 
model used the nonlinear Donnell theory for 
shallow shells with in-plane displacements 
accounted for in the equations of motion. The 
second model used a more elaborate scheme 
employing the Sanders-Koiter nonlinear theory for 
shells.  

The equation of motion is derived using the 
Lagrange equation in a variational approach. The 
final expression for the Lagrange equation is given 
by  
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where, 1, ,j N T= … , S  and SV  are the kinetic and 
potential energies of the structure including the 
effect of the boundary conditions,  and  are 
the kinetic and potential energies of the fluid, G
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the gyroscopic energy associated with the flow 
potential, jQ  are the generalized external forces 
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 the generalized coordinates. To obtain the 
expressions for the kinetic and potential structural  
energy, a suitable nonlinear model is chosen to 
describe the relationships between displacements, 
strains and stresses.  

2.1 Structural model 

For a homogeneous and isotropic material 
( zσ = , case of plane stress) the relationship 
between stress and strains is given by  
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According to classical shell theories [see Amabili 
(2003)], the strain components xε , θε  and xθγ  at 
an arbitrary point of the shell are related to the 
middle surface strains ,0xε , ,0θε  and ,0xθγ  and to 
the changes in the curvature and torsion of the 
middle surface xk , kθ  and xk θ  by the following 
three relationships: ,0x x xz kε ε= + , ,0 z kθ θ θε ε= + , 
and ,0x x z kxθ θ θγ γ= + , where z is the distance of 
the arbitrary point of the shell from the middle 
surface. Therefore the expression for the potential 
energy of the structure is given by 

shell springSU U U= + ,                      (3) 
where  is the strain energy of the shell and 

 is the strain energy associated with the 
boundary conditions. Special attention on the 
theoretical representation of the boundary 
conditions applied at the shell edges is given in the 
following subsection. The final expression for the 
shell strain energy, including the effect of 
membrane, bending and the interaction of the two, 
is given by   
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Neglecting rotary inertia but retaining in-plane 
inertia, the kinetic energy TS of a circular cylindrical 



shell is given by 
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where ρS is the mass density of the shell.  
The generalized forces Qj are obtained by 

differentiation of the Rayleigh dissipation function 
and of the virtual work W done by external forces: 
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where / j j jF q c q∂ ∂ = . The expressions for the 
Rayleigh dissipation function F, and the work done 
by external forces are explicitly given in Amabili 
(2003). 

2.2 Boundary conditions 

The following boundary conditions are imposed 
at the shell ends (see Figure 1): 
v = w = w0 = 0, x aN k u= − , (x r )M k w x= − ∂ ∂ ,          
at x = 0, L,                                                     (7) 

 

where Nx is the axial load per unit length (around 
the circumference), Mx is the bending moment per 
unit length, ka is stiffness per unit length of the 
elastic, distributed axial springs at x = 0 and L and 
kr is the stiffness per unit length of the elastic, 
distributed rotational springs at x = 0 and L. 
Moreover, u, v  and w must be continuous in θ. The 
last boundary condition accepts different values for 
the axial spring ka thus simulating different 
experimental boundary conditions. For example, it 
produces boundary conditions from a case of zero 
moment (Mx = 0, unconstrained rotation) to a 
perfectly rotationally clamped shell ( 0w x∂ ∂ = , 
obtained as limit for ), according to the 
value of kr. In the case of not very short thin shells, 
the axial spring ka plays a much larger role than the 
rotational spring kr. 

rk →∞

2.3 Solution expansion 

A base of shell displacements is used to discretize 
the system; the displacements u, v and w can be 
expanded by using the following expressions, which 
identically satisfy the boundary conditions: 
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where j is the number of circumferential waves, m is 
the number of longitudinal half-waves, 

m m Lλ π=  and t is the time; um,j(t), vm,j(t) and 
wm,j(t) are the generalized coordinates, which are 
unknown functions of t; the additional subscript c or 
s indicates whether the generalized coordinate is 
associated with a cosine or sine function in θ, 
except for v, for which the notation is reversed; no 
additional subscript is used for axisymmetric terms. 
The integers N, M1 and M2 must be selected with 
care in order to obtain an acceptable dimension of 
the nonlinear problem and the required accuracy.  

Imperfections are expanded according to the 
following Fourier series, 
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2.4 Fluid-dynamics model 

2.4.1 Fluid structure interaction 
The shell is considered to be conveying 

incompressible fluid. Furthermore, it is assumed 
that the fluid is inviscid and isentropic and the flow 
is irrotational. Nonlinearities in the dynamic 
pressure and in the boundary conditions at the fluid-
structure interface are neglected, because fluid 
movements of the order of the shell thickness may 
be considered to be small; and hence a linear 
formulation is quite reasonable [see Gonçalves and 
Batista (1988)]. In addition, pre-stress in the shell 
due to fluid weight (hydrostatic effect) is neglected. 
With these assumptions in mind, the fluid structure-
interaction can be described by potential flow 
theory. The potential flow is comprised of two 
terms, one which is represented by the uniform 
axial undisturbed mean flow velocity, and the other 
one by the unsteady flow. The expression for the 
unsteady potential flow is obtained by solving the 
Laplace equation  
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where ( ), , ,x r tθΦ  is the unsteady potential flow, r 
is the mean radius of the flow domain. Accordingly, 
the total perturbed pressure P acting on the fluid-
shell interface is defined as the combination of the 
mean pressure P  and the perturbation pressure p , 
i.e., P P p= + . The perturbation pressure is found 



using the linearized Bernoulli equation, yielding  
(F )p t U xρ= − ∂Φ ∂ + ∂Φ ∂ .                          (11) 

For this study, it is necessary to assume boundary 
conditions also beyond the shell extremities. Since 
any system is different, and since different inflow 
and outflow boundary conditions do not affect the 
results as greatly if they are taken sufficiently far 
away from the shell, simplified models can 
conveniently be introduced.  The fluid domain is 
assumed to be a cylinder of infinite extent, within a 
periodically supported shell of infinite length so that 
it is possible to employ the method of separation of 
variables to obtain the velocity potential. The 
distance between periodic supports is L. This means 
that the shell radial displacement w is assumed to be 
a periodic function with main period 2L, and the 
same is satisfied by the velocity potential and the 
perturbation pressure. 

If no cavitation occurs at the fluid-shell interface, 
the boundary condition expressing the contact 
between the shell wall and the flow is  
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Using the method of separation of variables, the 
final expression for the potential Φ is given 

by ,
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where  is the modified Bessel function of the first 
kind and of order n, and I

In

n′  is the derivative of In 
with respect to the argument. Using the solution for 
Φ and equation (11), the perturbation pressure at the 
shell wall is 
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2.4.2 Energy associated with the flow 
The total energy EF , associated with the flow, 

can conveniently be divided into three terms with 
different  contributions of time functions and their 
derivatives: 

 F F G FE T E V= + − .                         (13) 
The first and second of the three terms on the 

right-hand side can be identified as the kinetic and 
gyroscopic energies, respectively; an opposite sign 
is introduced for the potential energy VF for 
convenience. The kinetic energy  of the fluid 
associated with the perturbation potential, by using 
the orthogonality of 

FT
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An analogous expression for the kinetic energy of 

an external flow is given in Amabili (2003). 
The potential energy VF, by using the 

orthogonality of cos( / )m x Lπ  in (0, L) and of 
cos( )nθ  in (0, 2π), is 
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Equation (14) shows that VF is negative, that is, 
the stiffness of the system is a decreasing function 
of U. This explains the shell instability at 
sufficiently high values of U.  

The final expression for the gyroscopic energy EG 
associated with the perturbation potential is 
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One can easily verify that EG is globally zero in 
the case of harmonic vibrations. This proves that the 
system is conservative. In fact, no energy is 
dissipated; the fluid is assumed to be inviscid. Note 
that equation (15) expresses a particular coupling 
between modes through damping that is 
characteristic of gyroscopic systems; in this class of 
problems belong systems with mass transport. 
Additional simplifications into the derivation of the 
flow energy is given in Amabili et al . (2003). 

The final expressions for the structural and flow 
energies along with the work done by external 
forces are substituted in the Lagrange equation (1) 
to obtain the equations of motion in the global 
coordinates.  

3. COMPARISON WITH 
EXPERIMENTS 

Experiments on stability of circular cylindrical 
shells conveying water flow were performed by 
Karagiozis et al. (2005, 2008). The water-flow (ρF 
=1000 kg/m3) apparatus involves a modification of 
the vertical test-section of a water tunnel such that 
the flow from the upper part of a 203 mm diameter 
test-section is channeled into the test shell, which 
has a considerably smaller diameter (less than half). 
The test shell is surrounded by quiescent water, see 
Figure 2; in the tests, the pressure in that fluid 
region was higher than the pressure in the internally 
flowing fluid at mid-length of the shell, that is, 

 at x = L/2. Thus, there was a net inward-
acting pressure (negative pressure pm). This was 
necessary to achieve flow-induced instability for 
some of the shells, because of the limited maximum 

ann innP P>



flow velocity attainable in the water tunnel. 
Experiments were conducted on aluminium shells 
glued to copper rings. The tested shells have the 
following dimensions and material properties: 
L=0.1225 m; R=0.041125 m; h=0.000137 m; 
ρS=2720 kg/m3; ν = 0.38 and E = 70×109 Pa; the 
radius delimiting the still fluid domain is R1 = 
0.1015 m.  

 
Figure 2: Apparatus for water tunnel experiments. 

 
The rings sat on plastic supports in the test-

section and were sealed with silicone rubber. 
Experimental boundary conditions lie between ideal 
simply supported and clamped ends, being closer to 
the simply supported ends. In particular, no axial 
constraint is present, so far as axisymmetric modes 
are concerned. A nondimensional fluid velocity V is 
introduced for convenience, defined as in Weaver 
and Unny (1973): V U L D h= / ( / ) / ( ) /π ρ2 1 2{ } , 
with D E h= −3 212 1( )ν .  

3.1 Nonlinear results 

Figure 3 shows theoretical nonlinear results 
displaying a strong subcritical pitchfork bifurcation 
underlying the large hysteresis between the onset 
and cessation of instability. The shell displacement, 
divided by the shell thickness is plotted against the 
non-dimensional water velocity V for three different 
boundary conditions at the shell ends: (i) simply 
supported boundary conditions, (ii) distributed 
springs at x = 0 and L of stiffness ka= 1×107 N/m2 
and kr= 0.3×103 N/rad (thin line) and (iii) clamped 
edges for asymmetric modes  simulated with ka= 
1×1011 N/m2 and kr= 1×106 N/rad. These results are 
for a perfect shell. 

 
Figure 3: Comparison of theoretical model with 
different boundary conditions for an aluminium 
shell with internal water flow n=6, transmural 
pressure ( )2 5.8x LP =Δ = kPa. 

\

 
 

Figure 5: Comparison of experimental and 
theoretical results including geometrical 
impterfections for an aluminium shell with n=6 and 

( )2 5.8x LP =Δ = kPa. ⎯⎯, stable solutions; – –, 

unstable solutions. (a) Perfect shell model; (b) shell 
with initial imperfections (A1,n = -3.05h). 

Two representative sets of experimental results 
are shown in Figures 4(a,b); Fig. 4(a) shows results 
for a perfect shell and Fig.4(b) theoretical results 
including initial shell imperfections, along with  
experimental data. A very large difference is 



observed between the instability point predicted by 
linear theory and the actual value under 
perturbations, showing that a nonlinear approach is 
absolutely necessary for a safe design of shells 
conveying flow.  

4. CONCLUSIONS 
A reasonably good agreement between 

experimental and theoretical results was obtained 
for shells with initial imperfections and mixed 
boundary conditions. Axisymmetric and 
asymmetric imperfections with a number of 
circumferential waves which is not a multiple of 
number of waves at instability play a small role. 
Calculations show the convergence of the solution 
and the accuracy of Donnell’s theory retaining in-
plane displacements for thin shells.  

From the design point of view, this study shows 
that the critical flow velocity for shells cannot be 
predicted by a linear analysis, and that existing 
safety criteria may be inadequate, due to the 
subcritical bifurcation associated with loss of 
stability. 
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