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ABSTRACT
This paper investigates the wake-induced vibration (WIV)

of the downstream cylinder of a pair as far as its dependency
of Reynolds number is concerned. Experiments have been con-
ducted in a circulating water channel with a rigid cylinder elas-
tically mounted to respond with oscillations in the cross-flow di-
rection. Various sets of coil springs were employed to vary the
reduced velocity of the system maintaining constant the Reynolds
number. Experiments performed with a cylinder mounted with-
out springs provided the idealised case of reduced velocity equal
to infinity. We conclude that the amplitude of the WIV response
has a strong dependency on Reynolds number even within the
small range between Re = 2×103 and 2.5×104. If the reduced
velocity parameter is isolated — by making it equal to infinity,
for instance — the Re-dependency still dominates over the be-
haviour of the response.

INTRODUCTION
Wake-induced vibration (WIV) is a fluid-elastic mechanism

able to excite into oscillatory motion a bluff body immersed in
a wake generated from another body positioned upstream. An
arrangement of a pair of cylinders is shown in Fig. 1 and our in-
terest is in vibrations around the aligned configuration y0 = 0.
The upstream cylinder is exposed to a free stream with veloc-
ity U , but the downstream body is immersed in a disturbed flow
region created by the wake of the upstream cylinder. Reynolds
number in the present work is always based on the velocity ap-
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proaching the upstream body. Vortices shed from the first body
will not only pass by or impinge on the downstream cylinder,
but will also interfere with vortex shedding from the downstream
cylinder. Hence, if the downstream cylinder is mounted on an
elastic base the response of the body will be influenced by the
wake coming from the upstream body.

Previous works have found that the typical WIV response
is characterised by an asymptotic build up of amplitude with in-
creasing reduced velocity [1, 2, 3, 4]. In [5] we have investi-
gated the origin of the fluid force involved in the excitation of
the second cylinder. We concluded that WIV is indeed a wake-
dependent type of flow-induced vibration (FIV), yet we found
that it is the unsteadiness of the wake that plays a role in the
WIV mechanism and not simply the displacement of a steady
flow field. We have suggested that the WIV mechanism is sus-
tained by unsteady vortex-structure interactions that input energy
into the system as the downstream cylinder oscillates across the
upstream wake.

We have shown that, for larger separations, the upstream
static body sheds vortices as an isolated cylinder while the down-
stream elastic body responds with oscillations in a different fre-
quency. For higher reduced velocities the upstream shedding fre-
quency ( fs) can be many times the oscillation frequency ( f ), and
yet the body will respond with severe vibrations. WIV is not a
resonant phenomenon. Coherent vortices impinging on the sec-
ond cylinder and merging with its own vortices induce fluctua-
tions in lift that are not synchronised with the motion. While
typical vortex-induced vibration (VIV) of a single cylinder finds
its maximum amplitude of vibration at the resonance fs = f0 ( f0
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FIGURE 1. Tandem arrangement of a pair of cylinders. The down-
stream cylinder is elastically mounted to allow oscillations in the cross-
flow direction only.

is the natural frequency of the structure), WIV keeps increasing
ŷ/D even when fs is much higher than f0.

The present experimental investigation is concerned with
the Re-dependency of the cross-flow response of a rigid circu-
lar cylinder positioned at x0/D = 4.0 downstream of an identical
static cylinder (where x0 is the streamwise separation measured
from centre to centre). Experiments were performed in a recir-
culating water channel with controlled flow speed U . The down-
stream cylinder was elastically mounted on a system in which the
structural stiffness (spring constant k and, consequently, struc-
tural natural frequency f0) could be varied continuously. Individ-
ual control of U and k provided that both Reynolds number (rang-
ing between Re = 2× 103 and 2.5× 104) and reduced velocity
(between U/D f0 = 2.0 and 40) could be varied independently.
In order to investigate the importance of Reynolds number over
the WIV response we have performed experiments at constant Re
varying reduced velocity by changing the spring stiffness (k) of
the system.

EXPERIMENTAL SET-UP
The experimental set-up employed in the present study is

described in more details in [5]. Experiments were performed in
a recirculating water channel with a test section 0.6m wide, 0.7m
deep and 8.0m long. Flow speed U was continuously variable up
to 0.6m/s and free stream turbulence intensity was (3.1±0.7)%
on average. The actual flow quality was proved to be adequate
to perform our FIV tests. This was validated with a good agree-
ment between our preliminary VIV results and other experiments
presented in the literature [4, 6].

Two circular cylinders were made from a 50mm diameter
acrylic tube with an aspect ratio of 13. Cylinders were hollow

FIGURE 2. Schematic representation of the 1-dof rig holding the
downstream cylinder. The free stream flows out of the page in the x-
axis direction.

and filled with air in order to keep the mass as low as possible. It
was judged preferable not to install end plates on the cylinder in
order not to increase the fluid damping in the system; instead it
was chosen to have the models terminating as close as possible
to the glass floor of the test section. The upstream cylinder was
rigidly attached to the structure of the channel preventing dis-
placements in any direction, while the downstream cylinder was
fixed from its upper end to an 1-dof elastic mounting.

The initial separation in the streamwise and cross-flow di-
rections between cylinders (x0 and y0 in Fig. 1) could be varied
by changing the position of the upstream model. Figure 2 shows
a schematic representation of the 1-dof rig on which the down-
stream cylinder was mounted. Both models were aligned in the
vertical direction passing through the free water surface down to
the full depth of the section. The support system was firmly in-
stalled on the channel structure and the sliding cylindrical guides
were free to move in the transverse direction defined by the y-
axis.

A pair of sliding guides made out of a carbon fibre tube with
a smooth finish ran through air bearings spanning the width of
the section. All moving parts of the elastic base contributed to
the effective mass oscillating along with the cylinder resulting in
a mass ratio of m∗ = 2.6 (calculated as the total mass divided by
the mass of displaced water). A pair of coil springs connecting
the moving base to the fixed supports provided the restoration
force of the system; several spring sets were employed in order
to vary the structural stiffness k. A particular condition has been
prepared to represent an idealised system with no structural stiff-
ness. This was obtained by removing the springs and letting the
system to respond with no restoration force, thus making k = 0.
By carrying out free decay tests in air it was also possible to es-
timate the natural frequency f0 for each pair of springs and the
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overall structural damping of the system in ζ = 0.7% (calculated
as a percentage of the critical damping). Therefore, the product
m∗ζ = 0.018 for the majority of the experiments.

A load cell was attached between the model and the moving
table to measure instantaneous and time-averaged hydrodynamic
forces acting on the cylinder. An optical positioning sensor was
installed to measure the y-displacement of the cylinder without
introducing extra friction to damp the oscillations.

WAKE-INDUCED VIBRATION
Figure 3 presents the WIV response of the downstream

cylinder of a pair mounted with springs at x0/D = 4.0. The same
pair of springs was employed during the whole experiment and
the velocity of the flow in the test section was varied in order
to cover a large range of reduced velocity, therefore yielding
Re = 2000−25000. (We shall analyse the case ‘without springs’
later in this paper.) The first graph plots displacement versus re-
duced velocity. ŷ/D is the harmonic amplitude of displacement
(the rms of the signal multiplied by

√
2) and gives a good idea

of the average amplitude of vibration for many cycles of oscilla-
tion. The characteristic build-up of response for higher reduced
velocities, reported in previous works [1, 7], is clearly observed
and contrasts with the typical VIV response obtained for a sin-
gle cylinder [4]. A discrete hump is found to occur at around
U/D f0 = 5.0 and corresponds to the local peak of VIV reso-
nance; although this happens slightly later in the reduced veloc-
ity scale due to the shielding effect of the wake of the upstream
cylinder that reaches the second cylinder. Beyond that, a branch
of monotonically increasing amplitude starts to build-up with in-
creasing reduced velocity.

The bottom graph of Fig. 3 shows the dominant frequency
of oscillation. During the beginning of the VIV regime the fre-
quency curve follows closely the St = 0.2 line until f = f0, but
later departs from it to follow the lock-in behaviour observed for
a single cylinder within the synchronisation regime. But where
the typical VIV regime would have finished for a single cylinder,
say for U/D f0 > 15, the f curve remains on the same trend as
before, which is distinctively lower than St = 0.2. This is the first
evidence that there must be a fluid force with a lower frequency
that dominates the excitation — lower than the vortex shedding
frequency of both cylinders.

Looking again at the response curve in Fig. 3 it is quite ap-
parent that three different regimes can be identified by different
inclinations of the displacement curve: (i) a VIV resonance hump
(upper branch) around U/D f0 = 5; (ii) a combined VIV (lower
branch) and WIV regimes roughly in the range U/D f0 = 5−17;
and (iii) a WIV regime for U/D f0 > 17. The WIV response of
the downstream cylinder of a pair is distinctively different from
the VIV response of a single cylinder. Although some aspects are
common to both types of FIV, especially those related to the over-
lap of VIV regime in the WIV response, others are very different.
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FIGURE 3. WIV response of a downstream cylinder mounted with
and without springs at x0/D = 4.0. Top: displacement; bottom: domi-
nant frequency of oscillation.

The low frequency of response observed for high reduced veloc-
ities is not directly associated with the vortex shedding mecha-
nism of either cylinder.

Figure 3 also presents the WIV response for a downstream
cylinder mounted without springs. Both curves were obtained
for the same variation of the flow speed; therefore both data sets
share the same Reynolds number scale. But because the sys-
tem without springs has no inherent f0 it does not make sense to
plot this curve with a reduced velocity axis. In fact, by making
f0 = 0 we are effectively making U/D f0 = ∞ for all points of the
response without springs; the variation of flow speed can only be
represented by Re in this case.

It was interesting to observe that a cylinder without springs
was able to sustain oscillations, but most surprisingly the ampli-
tude of response was remarkably similar to the case with springs.
As far as the amplitude of response is concerned, it appears that
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FIGURE 4. Non-dimensionalised dominant frequency of oscillation
of a downstream cylinder mounted with and without springs. Please
refer to Fig. 3.

the absence of springs is insignificant for the WIV mechanism.
As expected, the local peak of VIV around U/D f0 = 5.0 disap-
peared once the resonance fs = f0 was eliminated by removing
the springs. But the overall response for both cases, with and
without springs, is notably similar. The fact that ŷ/D increases
with flow speed is not an effect of reduced velocity. In other
words, the increase in WIV response observed for a cylinder
without springs cannot be related to any structural stiffness; in-
stead, it seems that the response reveals some dependency simply
on Reynolds number. Since both curves are essentially very sim-
ilar, we suggest that an independency of response from reduced
velocity and a dependency on Re might as well be occurring for
the cylinder mounted with springs.

Let us turn now to the frequency of response presented in
the bottom graph of Fig. 3. Since f0 is not defined for the case
without springs, we can only compare both curves if they are
plotted in dimensional form (1/s). In contrast with the frequency
response with springs the case without springs shows no effect
of VIV synchronisation — that is obvious since there is no f0
for it to be synchronised with — but follows an almost straight
line as the flow speed is increased. In fact, we note that it fol-
lows very closely a dash-dotted line marked as fw, which we
shall explain later. Another way to analyse this result is to create
a non-dimensional parameter f D/U , a type of Strouhal number,
plotted in Fig. 4. This way, the St = 0.2 line presented in Fig. 3
becomes a constant in Fig. 4 and all the data is distorted to in-
corporate the effect of U varying in both axes. We shall return to
this graph after some analytical modelling that will follow in the
next sections.
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FIGURE 5. Steady fluid forces on a static downstream cylinder at
x0/D = 4.0 and various staggered positions.

THE WAKE STIFFNESS CONCEPT
If the downstream cylinder is dislocated from the centreline

of the wake it will experience a steady lift force even if the bod-
ies are held static in the flow [8, 2]. Zdravkovich [1] presents a
map of steady fluid forces acting on a cylinder across the wake
for separations as large as x0/D = 5.0. His results, which are in
agreement with many other maps in the literature, clearly show
that the steady lift always points towards the centreline of the
wake, i.e. as restoring the staggered downstream cylinder back
to the tandem configuration. The steady lift is zero on the centre-
line of the wake, increases as the second cylinder is displaced to-
wards the wake interference boundary and is reduced as the body
is positioned farther out of the wake. Keeping the downstream
cylinder at x0/D = 4.0 and traversing it in fine steps across the
wake we built the quasi-steady behaviour of lift (Cy) versus lat-
eral spacing presented in Fig. 5. Once more it shows that the
steady lift acting on the downstream cylinder points towards the
centreline of the wake for all y0/D separations.

We note that Cy acting towards the centreline has a rather
good linear behaviour between −1.0 < y0/D < 1.0 and does not
vary with Re (at least within the range of the experiments). Of
course nonlinearities appear for larger separations, but we can
estimate the slope

αCy
≡
∣∣∣∣ ∂Cy

∂ (y0/D)

∣∣∣∣
y0/D=0

= 0.65 (1)

within 95% confidence around the centreline and inside the wake
interference region. For convenience, we shall refer to this slope
simply as αCy

from now on. In [5] we have suggested that such
a strong steady lift is induced by the unsteady interaction of vor-
tices present in the wake coming from the upstream cylinder.
However, in the present work it suffices to know that this effect
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works as a restoring force towards the centreline — a type of
fluid-dynamic “spring” — providing a flow-originated stiffness
to the system due to the wake interference effect; hence such an
effect will be referred to as wake stiffness. The equivalent spring
constant that would generate such a flow effect is given by

kw = αCy

1
2

ρU2; (2)

thus an equivalent natural frequency fw could also be associated
with the wake stiffness and expressed by

fw =
1

2π

√
kw

(m∗+Ca)ρ
πD2

4

(3)

(where Ca denotes the potential added mass coefficient).
Since wake stiffness is a fluid-dynamic force, its effect

would be equivalent to a spring with a constant kw that increases
with U2, hence the associated natural frequency fw increases lin-
early with Re. In fact, the wake stiffness is so dominant that even
if we remove the coil springs from the 1-dof rig employed in the
experiments the downstream cylinder is able to respond with os-
cillatory movements sustained by this fluid-dynamic restoration
as seen in Fig. 3.

If we spend some time modelling the WIV response of a
cylinder without springs [5], i.e. making k = 0 in the equation of
motion, we find that the amplitude of response

ŷ
D

=
1

4π
Ĉy sinφ

U
D f

ρUD
µ

µ

c
. (4)

is a function of non-dimensional groups that include the flow
speed U , friction damping c, frequency of oscillation f and the
phase angle φ between the excitation force Ĉy and the displace-
ment. Note that neither the mass nor any stiffness comes into
the equation, but the excitation is simply balancing the structural
damping of the system. Knowing that µ is a physical property
of the fluid and assuming that viscous damping c is only based
on the friction of the air bearings, we conclude that µ/c does
not vary with Reynolds number. We are left with three non-
dimensional groups that might have some dependence on flow
speed: (i) Cy sinφ is associated with the excitation force and can
be thought of as a constant in respect of Re[5]; (ii) U/D f repre-
sents the inverse of a non-dimensional frequency of oscillation;
(iii) ρUD/µ is the Reynolds number itself.

Substituting Eqn. 2 in Eqn. 3 and multiplying it by D/U
results in a Strouhal-type non-dimensional parameter

fwD
U

=
1

2π

√
2
π

αCy

(m∗+Ca)
. (5)

We already know that αCy
is independent of Re. If it is true that

the cylinder is oscillating with the characteristic frequency of
wake stiffness ( f = fw in Figs. 3 and 4), regarding that Ca cannot
vary with Re, we conclude that fwD/U is a constant irrespective
of Re.

Turning back to Fig. 3 we will note that f for a cylinder with-
out springs presents a remarkable linear behaviour that grows
with Re, which is represented by an almost constant curve far
from St = 0.2 in Fig. 4. This suggests that there must be a fluid
force with a characteristic frequency lower than fs dominating
the excitation. Note that this force cannot be related to f0 because
the system has no springs. Therefore we are left with the possi-
bility that this restoration is indeed coming from the Cy field,
hence it must be related to αCy

. Now if we substitute αCy
= 0.65,

m∗ = 2.6 and Ca = 1.0 in Eqn. 5 we find that fwD/U = 0.054,
which is represented by the fw dot-dashed line in Figs. 3 and
4. The agreement between fw and the WIV response without
springs is remarkable. This is evidence that a cylinder without
springs may as well be responding to the wake stiffness with
f = fw for the whole range of Re.

If it is true that f = fw, Eqn. 5 tells us that f D/U is also a
constant and the cylinder indeed oscillates with f that increases
linearly with Re. In Fig. 3 we note that f closely follows fw up
to around Re = 1.5× 104 when the response amplitude reaches
about ŷ/D = 1.4. Beyond this point the amplitude grows towards
values around ŷ/D = 1.8 meaning that the cylinder is oscillating
further out of the wake interference region. From the Cy map for
x0/D = 4.0 (Fig. 5) we know that the steady lift grows linearly
with lateral separation up to around y0/D = 1.0. Farther than
that non linear effects start to appear and the wake stiffness can-
not be represented simply by the constant slope αCy

but should
gradually be reduced. This is exactly what is observed as the fre-
quency curve begins to depart from the fw line as ŷ/D increases.
Of course some effect in reducing f must be coming from the
fact that secondary effects in the effective added mass of fluid
may be appearing as the cylinder moves in and out of the wake
interference region. But even considering that the effective added
mass is constant throughout Re the agreement is still very good.

Turning back to Eqn. 4 we can now verify that µ/c, U/D f
and Ĉy sinφ are approximately invariant with Re, leaving only
the Reynolds number term itself on the right-hand side of the
equation. As a result it is evident from this analysis that ŷ/D
is linearly dependent on Re and the WIV response should in-
crease with flow speed up to a critical amplitude. Once the cylin-
der starts to be displaced out of the wake interference region
nonlinear effects become important limiting the response to an
asymptotic value. Secondary effects may be acting on U/D f and
Ĉy sinφ conferring on the response the curved shape presented in
Fig. 3. The analysis developed above is in good agreement with
displacement curves presented for both cases with and without
springs. Therefore we conclude the mechanism that is building
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up the amplitude of vibration in WIV is definitely not a conse-
quence of reduced velocity but a direct effect of Reynolds num-
ber.

Picking a displacement point from the curve without springs
at an arbitrary value of Re = 2.3×104 (represented by a vertical
arrow in Fig. 3) we are able to estimate the limiting value the
response is asymptotically approaching as U/D f0→ ∞ for that
specific Re. Of course this is the data point from the curve with-
out springs immediately above the vertical arrow, but it can also
be represented on the right-hand side axis for U/D f0 = ∞. Such
a strong Re dependency turned out to be a rather unexpected re-
sult. It took us some time to comprehend how a fluid-elastic
system could show considerably high variations in such a short
Re range. But if we consider that our system actually possesses
a fluid-dynamic spring that increases stiffness with U2 (Eqn. 2)
we are left with the only conclusion that ŷ/D must indeed vary
with flow speed.

VIV AND WIV RESONANCES
If the wake-stiffness is dominant over the vortex-impulse

term it is straightforward to predict that the cylinder should re-
spond with f = fw and not f = fs. As we have seen so far
fwD/U does not vary with flow speed, thus fw increases linearly
with Re. Since f0 is a constant defined by the springs, there must
be a critical point where the wake stiffness has the same inten-
sity as the spring stiffness, i.e. kw = k and fw = f0. This occurs
in Figs. 3 and 4 where fw crosses the f0 line at Re = 1.4× 104

(equivalent to U/D f0 = 18.8 for the case with springs). We
know the present set of coil springs provides the system with a
stiffness of k = 11.8N/m. But considering the steady lift map
with αCy

= 0.65 in Eqn. 2 we see that the wake stiffness can
reach values as high as kw = 34N/m at the end of the Re range of
the experiments. For the case with springs we find f following
closer to the f0 line during the range where VIV is relevant, with
the lock-in peak occurring around the intersection of f with both
f0 and St = 0.2 lines. This first VIV resonance is marked by the
vertical line fs = f0 in Figs. 3 and 4. At this point kw = 1.8N/m
is only 15% of k provided by the springs. As the flow speed is
increased the VIV synchronisation tends to disappear as St = 0.2
moves away from f0. At the same time the wake stiffness is also
getting stronger until both kw and k have the same value. As we
saw, this occurs for U/D f0 = 18.8 and is marked by the second
WIV resonance line fw = f0, beyond which kw is greater than k.

The two resonance lines divide the response for a cylinder
with springs in three regimes that are best identified in Fig. 3.
(i) Before fs = f0, when St = 0.2 is approaching f0, the dis-
placement resemble an initial branch of VIV and f follows the
Strouhal line up to the resonance peak. (ii) The second regime,
between fs = f0 and fw = f0, is marked by a steep slope in the
displacement curve; f remains rather close to f0 as the VIV syn-
chronisation range gradually gives way to a wake stiffness that
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is growing stronger with Re. (iii) The third regime, beyond the
second resonance fw = f0 is characterised by a change of slope
in both the displacement and frequency curves. With kw > k the
WIV response is established and dominates alone for the rest of
the Re range.

It works out as if the set of springs is important only in the
first regimes before the fw = f0 resonance, but the structural stiff-
ness (given by k) becomes less significant to the system as kw gets
relatively stronger. It appears that out of the resonances fs = f0
and fw = f0 the spring acts against the WIV excitation with the
effect of reducing the amplitude of vibration. This idea is in
agreement with the classical theory of linear oscillators; if the ex-
citation force is out of the resonance of the system the response
will not be as high as the resonance peak.

EXPERIMENTS AT CONSTANT REYNOLDS NUMBERS
At this point one may recall the results from [3], repro-

duced in Fig. 6, who measured the WIV response of a cylinder
at x0/D = 4.75 and constant Re = 3×104. They achieved that
by varying the spring stiffness of a force-feedback system. In
spite of operating at a fixed Reynolds number, they were able to
measure a build up of response that increased with reduced ve-
locity. In principle, this seems to contradict our theory that the
WIV response is not affected by reduced velocity.

Considering that their separation of x0/D = 4.75 must pro-
vide a wake stiffness effect in the order of αCy

= 0.55 (based on
a map similar to Fig. 5 but for x0/D = 4.75 [5, 1]), we can esti-
mate that the critical reduced velocity at which the wake stiffness
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FIGURE 7. WIV response at constant Re for x0/D = 4.0. Reduced
velocity varied by changing the springs.

equals the spring stiffness (kw = k) is as high as U/D f0 = 21
(considering Ca = 1.0 and their value of m∗ = 3.0). However,
the maximum reduced velocity achieved in their experiment is
only around 17. Hence the regime [3] observed was still between
the resonances fs = f0 and fw = f0, a region where VIV still has
some significance.

According to our theory, we would expect their results to
reach an asymptotic value around ŷ/D = 1.5 for Re = 3× 104,
what is in good agreement with their curve reproduced in the
present work. Note, however, that [3] do not plot ŷ/D but an
average of the 10% highest peaks of displacement which can be
considerably greater then the averaged ŷ/D that we usually em-
ploy. The same observation is also true for the results obtained
by [4] also presented in Fig. 6. Even though k was constant, they
could not reach the regime above the WIV resonance fw = f0 due
to a limitation in the maximum flow speed.

In order to verify this phenomenon, we have prepared a
series of experiments for three constant Reynolds numbers at
x0/D = 4.0. The flow speed was fixed and reduced velocity was
varied by changing the set of springs and, consequently, chang-
ing f0. Fig. 7 presents the results compared to our reference WIV
response of a cylinder with fixed springs and varying U/D f0 by
varying flow speed (the secondary axis of Re refers to this curve
only).

Three vertical arrows, one for each Re curve, mark the con-
dition where the stiffness of the varying spring matches the fixed
spring k. Hence all data points to the right of these arrows have
a spring that is softer than our reference curve (and stiffer to the
left). None of the curves was able to span the three regimes de-
fined by the resonance lines fs = f0 and fw = f0, but considering

the results of all three curves we are able to understand the gen-
eral behaviour of the response at a constant Re.

The curve for Re = 9600 does not have enough data points
to reveal a local peak of VIV at fs = f0, but the majority of the
points fall within the first regime between the resonances, where
VIV is gradually losing its influence to WIV. In our experiment
with varying Re we have noticed that the amplitude of response
generally presents a positive slope in this first regime; this is
verified now for a constant Re as well. As we have discussed
above, [3] found increasing response also for a constant Re in
this regime. Our data agrees with theirs in showing a build up
of response between fs = f0 and fw = f0. Such an effect is also
observed for our curve at Re = 19200.

Let us move on to the other curves at Re = 14500 and 19200
that are able to cross fw = f0 and enter the second regime where
WIV dominates. Now that the wake stiffness is greater than the
spring stiffness we see that the response is not influenced by re-
duced velocity anymore, but presents a rather constant level of
amplitude for each fixed value of Re. Even if the reduced veloc-
ity is increased from 20 to 35 the amplitude of response seems
not to be much affected and the data points appear to follow the
same trend as long as Re is kept constant. Going back to the
curve without springs in Fig. 3 we are able to find a displace-
ment amplitude for each of our Re curves at U/D f0 = ∞ towards
which the data points should be converging. We note that they are
slightly higher than the level of amplitude the curves are reaching
beyond fw = f0, but we have to remember that we are still oper-
ating with springs, although soft one, that might be contributing
to reduce the response away from the resonance lines.

While on one hand the VIV peak at fs = f0 seems to always
reach ŷ/D around 1.0 (for this value of m∗ζ ), the amplitude at
the end of the first regime, at fw = f0, varies with the intensity
of the wake stiffness effect. Because kw increases with Re the
amplitude at fw = f0 must also increase with Re. This level of
amplitude is already very close to the asymptotic value predicted
by the experiments without springs; hence, as the spring stiffness
gets softer beyond fw = f0, we expect the curves to be converg-
ing towards the values plotted at U/D f0 = ∞.

This series of experiments at constant Re proved that while
the response below fw = f0 is dependent on both Re and reduced
velocity, the response for fw > f0 is clearly governed by Re only.
In other words, we conclude that in the first regime where VIV
and WIV are competing (or cooperating) the response increases
due to a combination of spring and wake-stiffness effects. Even
with constant Re we note a build up of response while the ratio
between k and kw makes reduced velocity an important param-
eter. But once the wake stiffness becomes dominant over the
springs the response takes no note of the structural stiffness and
is only governed by wake stiffness. Now this second regime is
clearly dominated by a Reynolds number effect.
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CONCLUSION
We have shown by experiments and analytical modelling

that the WIV response of the downstream cylinder increases
with flow speed due to the wake stiffness effect as a function of
Reynolds number. However, a simple model that did not account
for nonlinear effects in the fluid force was not able to predict
the correct level of amplitude. We found that the WIV response
should converge to an asymptotic value that depends on Re but
not on reduced velocity. As ŷ/D is increased beyond a certain
limit the cylinder starts to reach amplitudes out of the wake inter-
ference region. The wake stiffness effect cannot be represented
by a linear spring anymore, but the overall stiffness tends to be
reduced.

In our experiments we observed a gradual transition from an
initial VIV regime to a dominating WIV regime as flow speed
was increased. The boundaries between them were found to be
related to two resonances: fs = f0 and fw = f0.

(i) The first regime has a clear VIV character, with a local
peak of displacement occurring at fs = f0. The wake stiffness is
still smaller than the spring stiffness, making U/D f0 a significant
parameter.

(ii) During the transition between both regimes we find an
intermediate condition in which VIV is losing strength and WIV
is taking control. Between the resonances fs = f0 and fw = f0
the response takes off from the VIV peak until it reaches a char-
acteristic value at fw = f0 that is dependent on Re. During the
transition, reduced velocity gradually loses its influence until the
WIV response is only dominated by Re as it enters the second
regime.

(iii) The second regime is characterised by an established
WIV response that suffers no influence of VIV. Beyond fw = f0
the wake stiffness effect is dominant over the spring stiffness and
reduced velocity becomes irrelevant. The amplitude of response
is governed by Re and tends towards an asymptotic value esti-
mated by experiments at U/D f0 = ∞.

The total stiffness of the system is not only caused by either
the wake stiffness (kw) or the spring stiffness (k) alone, but it is
a combinations of both. k is very relevant in the first regime,
but kw becomes dominant in the second. Nevertheless, both k
and kw contribute in parts to the characteristic displacement and
frequency responses.
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