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ABSTRACT 
This study builds on an earlier study of low-Reynolds 

number flow about a cylinder forced to oscillate in-line with the 

main flow, which found vortex switches at some oscillation 

amplitude values. Here we extend the Reynolds number domain 

to Re=60-350, utilize a computational domain characterized by 

R2/R1=360, and do computations at two frequency ratios of 

f/St0=0.8 and 0.9. Computations were carried out using a 

thoroughly tested finite-difference code. Some results were 

compared with those obtained by Ansys CFX, and good 

agreement was found.  

When plotted against oscillation amplitude, rms and time-

mean values of force coefficients revealed a shift toward lower 

amplitude with higher Re. Findings for the effect of frequency 

ratio are similar.  

Where vortex switches occurred, a pre-and post-jump 

analysis is carried out. POD analysis of the cylinder wake flow 

field is employed to reveal the detailed wake dynamics as the 

forcing parameters are varied. The analysis provides further 

details on the transition of the dominant wake modes in 

response to the symmetry breaking bifurcation underlying the 

vortex switches observed in the simulations. 

 

Keywords: circular cylinder, in-line oscillation, POD, 

symmetry-breaking bifurcation 

 

INTRODUCTION 
Flow around oscillating cylinders is of both practical and 

academic interest, and has thus been widely studied. Structures 

exposed to wind or waves can oscillate, which can have 

consequences in terms of vibration, stresses and wear, noise, 

and even the viability of the structure. Flow-structure 

interaction is complex in any case, and particularly so when the 

bluff body is also in motion. If a cylinder is in forced motion, 

then the vortex shedding patterns are affected by factors such as 

cylinder forcing frequency and the amplitude and direction of 

oscillation, in addition to the Reynolds number of the flow.   

At low Reynolds numbers, studies have identified vortex 

switches for cylinders in motion. Williamson and Roshko 

(1988) determined experimentally a map of vortex shedding 

modes for a transversely oscillating cylinder. Forced oscillation 

studies such as those of Blackburn and Henderson (1999) for 

Re=500, Kaiktsis et al. (2007) for Re=200, and Lu and Dalton 

(1996) for Re=185 have found vortex switches in transverse 

oscillation at frequency ratios over 1. Baranyi (2008a), 

investigating orbital cylinder motion, found sudden vortex 

switches (referred to as jumps) when varying the amplitude of 

transverse oscillation for frequency ratios below 1. 

For in-line oscillation, an experimental study by Cetiner & 

Rockwell (2001) was carried out at medium Reynolds numbers 

over a frequency ratio range of 0.44 to 3. Al-Mdallal et al. 

(2007) investigated a similar frequency ratio range numerically 

at Re=200, finding vortex switches. A low-Reynolds number 

numerical study (see Baranyi, 2009) also identified vortex 

switches for in-line oscillation against oscillation amplitude and 

also against frequency ratio ranging from 0.76 to 0.94, Baranyi 

(2008b). At some critical parameter values, flow pattern 

switched into a mirror image. Konstantinidis et al. (2005) report 

on particle image velocimetry measurements obtained in the 

forced wake of a circular cylinder in an incident flow with low-

amplitude periodic velocity oscillations superimposed upon it. 
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This case is equivalent to that of a cylinder forced to oscillate 

in-line with a steady incident flow.  

Another numerical study at Re=200 and frequency ratio 1 

is Mureithi et al. (2009). Complex dynamics including quasi-

periodicity, torus doubling and chaos were uncovered by the 

authors. A low order discrete model was developed based on 

symmetry-equivariance theory. The required numerical 

parameters for the model were determined via a POD 

decomposition of the temporal velocity field. The resulting 

simple model was found to capture the observed wake 

dynamics, qualitatively predicting the sequence of bifurcations 

found in the numerical computations.    

This numerical study investigates the effect of oscillation 

amplitude on the flow around a circular cylinder oscillating in-

line at 9 different Reynolds numbers, ranging from Re=60-350, 

at two frequency ratios of 0.8 and 0.9. In addition to pre- and 

post-jump analysis, POD analysis is utilized in order to identify 

the detailed wake dynamics.  

NOMENCLATURE 
Ax,y amplitude of oscillation in x or y directions, respectively, 

non-dimensionalized by d 

CD drag coefficient, 2FD  /(ρU
2
 d) 

CL lift coefficient, 2FL  /(ρU
2
 d) 

Cpb base pressure coefficient 

d cylinder diameter (m) 

FD drag per unit length of cylinder (N/m) 

FL lift per unit length of cylinder (N/m) 

f oscillation frequency, non-dimensionalized by dU  

fv vortex shedding frequency, non-dimensionalized by U/d 

p pressure, non-dimensionalized by 
2U  

R radius, non-dimensionalized by d  

Re Reynolds number, Ud  

St non-dimensional vortex shedding frequency, fv d/U 

t time, non-dimensionalized by d/U 

tq torque coefficient, torque of shear on cylinder surface, 

non-dimensionalized by ρU
2
 d

2
 

U free stream velocity, velocity scale (m/s) 

u,v velocities in x,y directions, non-dimensionalized by U 

x,y Cartesian co-ordinates, non-dimensionalized by d 

  kinematic viscosity (m
2
/s) 

  fluid density (kg/m
3
) 

τ       shear stress, non-dimensionalized by ρU
2
 

ω vorticity, y/v-x/v xy  ∂∂ ∂∂ , non-dimensionalized by 

U/d 

 

Subscripts 
D drag 

fb fixed body 

L lift 

rms root-mean-square value 

v vortex shedding 

x, y components in x and y directions 

0 for cylinder motion; for stationary cylinder at same Re; 

values on the wall 

1 on the cylinder surface 

2 on the outer boundary of the physical domain 

COMPUTATIONAL METHOD  
A non-inertial system fixed to the cylinder is used to 

compute two-dimensional low-Reynolds number unsteady flow 

around a circular cylinder placed in a uniform stream and 

forced to oscillate in in-line direction. The governing equations 

are the non-dimensional Navier-Stokes equations for 

incompressible constant-property Newtonian fluid, the equation 

of continuity and the Poisson equation for pressure. On the 

cylinder surface, no-slip boundary condition is used for the 

velocity and a Neumann type boundary condition is used for the 

pressure. At the far region, potential flow is assumed. Potential 

flow is assumed as an initial condition except for the cylinder 

surface, where zero velocity is used. The authors are aware of 

the fact that the potential flow assumption is not valid for the 

narrow wake domain on (R2), shown in Fig. 1. Since numerical 

analysis and tests showed that this simplifying assumption 

results in only a small distortion of the velocity field near the 

outer boundary wake region (Baranyi, 2008a), this simplified 

boundary condition is kept. 

Boundary-fitted coordinates are used to impose the 

boundary conditions accurately. The physical domain, bounded 

by two concentric circles, can be mapped into a rectangular 

computational domain where the spacing is equidistant in both 

directions (see Fig. 1). In the physical domain logarithmically 

spaced radial cells are used, providing a fine grid scale near the 

cylinder wall and a coarse grid in the far field. The governing 

equations and boundary conditions are also transformed into the 

computational plane and are solved by finite difference method. 

Space derivatives are approximated by fourth-order central 

differences, except for the convective terms for which a third- 

order modified upwind scheme is used. The Poisson equation 

for pressure is solved by the successive over-relaxation (SOR) 

method. The Navier-Stokes equations are integrated explicitly 

and continuity is satisfied at every time step. For further details 

see Baranyi (2008a). 

The 2D code developed by the author has been extensively 

tested against experimental and computational results for a 

stationary cylinder (Kravchenko et al., 2004 and Chakraborty et 

al., 1999) and computational results for cylinders oscillating in 

transverse or in in-line directions or following a circular path, 

including Lu and Dalton (1996), Al-Mdallal et al. (2007) and 

Didier and Borges (2007) with good agreement being found, 

(Baranyi, 2008a). For this study the dimensionless time step 

was 0.0005. Polar co-ordinates were used, the relatively large 

computational domain was characterized by R2 /R1=360, and the 

number of grid points was 481x451. The minimal mesh size 

next to the cylinder surface was ΔRmin/d=1.00658; the ratio of 

consecutive mesh sizes was constant at ΔRi+1/ ΔRi=1.013166). 
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Figure 1. Physical and computational domains 

 

In this study, computations for a cylinder oscillated 

mechanically in in-line direction were carried out at nine 

Reynolds numbers (Re=60, 80, 100, 120, 160, 220, 250, 300, 

and 350), a range within the limits of simulation by a 2D code 

for an oscillating cylinder. The non-dimensional frequency of 

oscillation fx=f was set at 0.8St0 and 0.9St0 values, where St0 is 

the non-dimensional vortex shedding frequency, or Strouhal 

number, for a stationary cylinder at that Reynolds number. This 

selection of f ensures synchronization or lock-in at moderate Ax 

oscillation amplitude values. The values used in this study are 

taken from Posdziech and Grundmann (2007) and Norberg 

(2003). In this study, the flow was considered to be locked-in 

when the vortex shedding frequency fv is equal to the frequency 

of cylinder oscillation f. For in-line oscillation, lock-in was 

found earlier in the vicinity of the natural vortex shedding 

frequency fv0, as well as the double of this frequency (Baranyi, 

2008a; Didier and Borges, 2007). Here the first, narrower lock-

in domain has been chosen. To create a more manageable scope 

of investigation, only locked-in cases were considered in this 

study.  

Time-mean (TM) and root-mean-square (rms) values of lift 

(CL), drag (CD) (without inertial forces), base pressure (Cpb) and 

torque (tq) coefficients were evaluated and plotted against the 

oscillation amplitude. Computations are performed at a fixed Re 

and f values with amplitude of oscillation as the independent 

variable. 

Here the torque coefficient tq (positive in counter-

clockwise direction) is determined from the torque of the shear 

acting on the cylinder: 
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where ψ  is the polar angle, 0τ  and 0ω  are dimensionless wall 

shear stress and vorticity, respectively. Here the well-known 

relationship between dimensionless shear stress and vorticity on 

the cylinder surface of 00   -Re= τω  was used, where Re is the 

Reynolds number. A similar torque coefficient is defined in 

Chen et al. (1995). Due to symmetry, naturally the time-mean 

value of torque tq, like that of the lift CL, is zero for a stationary 

cylinder under lock-in conditions. 

RESULTS 
Computational results were obtained for 9 Reynolds 

numbers at two frequency ratios. Here we focus on the effects 

of amplitude oscillation, Re, and frequency ratio on the rms and 

TM of force coefficients. When a vortex switch was identified, 

a pre- and post-jump analysis was carried out. Time-history of 

lift, drag-lift limit cycle curves, and vorticity contours were 

plotted for amplitude values directly before and after the switch. 

Limit cycle curves were compared for Re=200 with those using 

a different computational method. For further insight into the 

observed wake flow bifurcation, spatial and temporal POD 

analysis of the velocity fields was also performed for one of the 

computational cases.  

 

The Effect of Reynolds Number at f=0.8St0 

Figures 2-4 show the TM values of lift for the 9 Reynolds 

numbers investigated. In all cases, the solution switches 

between two so-called state curves (Baranyi, 2008a); the 

number and location of jumps varies. The two state curves in 

each set of curves, for lift coefficient and torque, are mirror 

images of each other. This, coupled with the existence of a 

critical amplitude beyond which the pair of curves appears 

strongly suggests that a pitchfork bifurcation underlies the 

resulting flow asymmetry.  At lower Re, such as Re=60, a 

higher amplitude is needed to trigger a switch between state 

curves (see Fig. 2). With increasing Re the locked-in domain 

shifts towards smaller amplitude values, especially in Figs. 2 

and 3.   

 

In-line oscillation; f=0.8St0
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Figure 2. Time-mean value of lift against amplitude 

 at Re=60, 80, 100 

 
The TM drag is shown in Figs. 5 and 6. Unlike the TM of 

lift, no switches are present in the locked-in domain. By 

increasing the Re, the curves once again shift to smaller 

amplitude values. At lower Re the curve is nearly linear, but 

curvature increases with increasing Re.  
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In-line oscillation; f=0.8St0
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Figure 3. Time-mean value of lift against amplitude 

 at Re=120, 160, 220 

 

In-line oscillation; f=0.8St0
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Figure 4. Time-mean value of lift against amplitude 

 at Re=250, 300, 350 

 

The TM of torque is shown in Fig. 7 for the four lower Re 

values investigated (other Re values are not shown here). The 

TM of torque is similar to that of lift, with both coefficients 

displaying shifts between state curves. The TM of base pressure 

behaves like the TM of drag (see Figs. 5 and 6), as do all rms 

values.  The TM of lift and of torque are distinguished from the 

others by the fact that a single period includes the shedding of 

two vortices, rather than one, at least for a stationary cylinder. 

The location and number of jumps are identical to those of the 

corresponding curves for the TM of lift in Figs. 2 and 3. Here 

also the state curves are symmetrical. 

 

 

 

In-line oscillation; f=0.8St0
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Figure 5. Time-mean value of drag against amplitude 

 at Re=60, 80, 100, 120, 160 
 

In-line oscillation; f=0.8St0
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Figure 6. Time-mean value of drag against amplitude 

 at Re=220, 250, 300, 350 

 

In-line oscillation; f=0.8St0
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Figure 7. Time-mean value of torque against amplitude 

 at Re=60, 80, 120, 160 
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The rms of drag for the lower Re values is shown in Fig. 8. 

The shift to lower amplitudes with increasing Re is once again 

visible, although the increase in curvature is less obvious.  

 

In-line oscillation; f=0.8St0
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Figure 8. Rms value of drag against amplitude 

 at Re=60, 80, 100, 120, 160 

 

The Effect of Reynolds Number at f=0.9St0 
Computations were repeated for the frequency ratio of 0.9. 

The TM of lift is shown for five Re values (Figs. 9 and 10). As 

a comparison of results for Re=80 and 100 shows, at the higher 

frequency ratio (Fig. 9) there is a considerable shift towards 

lower amplitude values from results for f/St0=0.8 (Fig. 2). The 

corresponding state curves are symmetrical. Figure 10 shows 

the TM of lift at higher Re, obtaining rather unusual curves that 

intersect each other. 

 

In-line oscillation; f=0.9St0
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Figure 9. Time-mean value of lift against amplitude 

 at Re=80, 100, 160 

 

In-line oscillation; f=0.9St0
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Figure 10. Time-mean value of lift against amplitude 

at Re=250, 300  

 

The TM and rms values of drag are shown in Figs. 11 and 

12, respectively. No switches are found, amplitude values shift 

down with increasing Re, and curvature increases with Re. 

Compared with f/St0=0.8 shown in Figs. 5, 6 and 8, the curves 

shift to smaller amplitude values. 

 

In-line oscillation; f=0.9St0
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Figure 11. Time-mean value of drag against amplitude 

at Re=80, 100, 160, 250, 300   

 

Figure 13 shows a comparison of two frequency ratios for 

Re=80. As can be seen from the figure, the curve shifted to 

lower amplitude values at the higher frequency ratio. Other 

force coefficients show a similar trend. 
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In-line oscillation; f=0.9St0
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Figure 12. Rms value of drag against amplitude 

at Re=80, 100, 160, 250, 300  

 

 

 
 

Figure 13. Time-mean of torque versus Ax for frequency 

ratios of 0.8 and 0.9 (Re=80) 

 

The Effect of Initial Condition 
So far all results shown (Figs. 2-13) are from computations 

for the initial cylinder position of polar angle θ=0° (3 o‟clock 

position). For the case of Re=250 computations were repeated 

for θ=30°, 45°, 60°, 90° and 180°. Different initial conditions 

can cause the locations and number of jumps to vary when TM 

lift and torque coefficients are plotted (Baranyi, 2008), thus 

reproducing different parts of the state curves. Figures 14 and 

15 show the TM lift and torque, respectively, plotted against Ax 

for θ=30° and 180°. These two values best represent the state 

curves, which are a mirror image of each other. Interestingly, 

none of the six θ values investigated resulted in any point on the 

upper state curve between 0.163 < Ax < 0.18. This shows how 

complex the boundary can be which separates the two “basins 

of attraction” for this nonlinear problem. These results indicate 

that, at a given amplitude, two mirror-image solutions coexist, 

sharing solution space, and depending on parameters that 

include initial condition.  

 

In-line oscillation; Re=250; f=0.9St0
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Figure 14. Time-mean of lift versus Ax for initial conditions 

θ=30° and 180° (Re=250; f / St0=0.9) 

 

 

In-line oscillation; Re=250; f=0.9St0
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Figure 15. Time-mean of torque versus Ax for initial 

conditions θ=30° and 180° (Re=250; f / St0=0.9) 

 

 

Comparison of Computational Results for Re=200 
Computations were carried out for a cylinder oscillated in 

in-line direction at the resonant frequency f=St0 for Re=200 for 

different dimensionless amplitude values. Figure 16 shows 

),( LL CC   limit cycle curves for different Ax oscillation 

amplitude values. The figures on the left were obtained by the 

second and third authors using the commercial software 

package Ansys CFX based on the finite volume method. The 

figures on the right were obtained by the first author using an 

in-house code based on the finite difference method. The 

agreement between the two sets of results is very good, giving 

further evidence to the validity of the codes.  
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Figure 16. ),( LL CC  limit cycle curves for different Ax values 

(left: CFX; right: In-house code of first author)  

 

 

 

Pre- and Post Jump Analysis 

The vicinity of a jump is investigated by different means, 

such as time history of lift, drag-lift limit cycles and vorticity 

contours. Figure 17 shows a periodic section of the time-history 

of life for amplitude values directly before and after the jump. 

The curves appear to be a mirror image of each other.  
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Figure 17. Time history of lift (solid line: Ax=0.2475; 

dotted line: Ax=0.2478); Re=250 

 
The limit cycle (CD,CL) curve shown in Fig. 18 also reveals 

a mirror image between the pre-jump curve (thick line) and the 

post-jump curve (thin line). The direction of orientation of the 

two curves is also opposite.  

0.8 1 1.2 1.4 1.6 1.8 2 2.2
-1.5

-1

-0.5

0

0.5

1

1.5

C
 L

C D

 
 

Figure 18. Limit cycle (CD,CL); Re=250; f=0.8St0; 

thick  line: Ax=0.2475, thin line: Ax=0.2478  

 
The vorticity contours shown in Fig. 19 also show the 

mirror image nature of the flow before and after a jump. The 

gray lines indicate negative vorticity values, and the black are 

positive. The vortex shedding mode is 1P, meaning that a pair of 

vortices is shed in one period.  

The present cylinder-flow system is reflection symmetric 

about a line through the cylinder center and parallel to the 

upstream flow vector. The presence of symmetry in physical 

systems makes them susceptible to symmetry breaking 

bifurcations. In the present case, inflow periodic forcing results 

in a pitchfork bifurcation of the flow – much like the buckling 

of a beam subjected to axial loading (although much more 

complex behavior is possible in the dynamic case). 
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Note that each of the wakes in Fig. 19 by itself no longer 

has the reflection symmetry on the initial stable flow. Since the 

overall symmetry must be conserved, the wake flow achieves 

this by „generating‟ reflection symmetric solutions, such that the 

„total symmetry‟ is again conserved if one considers both 

solutions. This is reflected in Figs. 17-19. 

 

POD Analysis 

Figure 20 shows the evolution of the wake flow toward the 

bifurcated solutions through the lift time-history for two 

amplitude values on either side of a jump. As can be seen, the 

two solutions coincide while the wake flow is steady and 

through one or two fluctuations, but then begin to diverge, 

becoming more periodic by around t=90 (the fully periodic state 

is shown in Fig. 17). 

 

 
 

 
 

Figure 19. Vorticity contours: top Ax=0.2475;   

bottom Ax=0.2478  (Re=250; f/St0=0.8) 
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Figure 20. Time history of lift (solid line: Ax=0.2475; 

dotted line: Ax=0.2478); Re=250, from bifurcation onset  

 

The particular case shown in Figs. 17-20 was also 

investigated by means of Proper Orthogonal Decomposition 

(POD) analysis. POD analysis is based on the Karhunen-Loève 

decomposition. POD is variously known as Principal 

Component Analysis (PCA) and Singular Value Decomposition 

(SVD). In POD, space-time data is decomposed into 

components or modes where the lowest mode carries the most 

energy, followed by the second etc. The POD decomposition is 

optimal, meaning that it is the most efficient linear 

decomposition capturing the highest energy for a given number 

of modes among all possible linear decompositions (Holmes et 

al., 1998).  Principal modes are extracted from the 

instantaneous inflow velocity field ( , )u x y  or the time-varying 

velocity (excluding the mean) at a given x-location ( , )u y t . In 

the analysis, the flow field is projected onto an orthonormal set 

of spatial functions or modes ( , )k x y in the former case, and 

( , )k y t in the latter. For the spatial decomposition, for 

instance,   the u-velocity field may be expressed as the modal 

superposition 
 

1

( , ) ( , )
r

k k

k

u x y a x y


   

 

POD analysis makes it possible to „visualize‟ the flow 

based on only a few of the most important modes. It is then 

easier to uncover the detailed dynamics of the wake. Spatial 

POD modes based on the inflow and transverse flow velocity 

components were computed for the two cases shown in Fig. 17 

for the spatial decomposition and Fig. 20 for the spatial-

temporal decomposition. 

 

 
 

Figure 21. Spatial POD modes 1 and 2, before the jump 

(a,b), Ax=0.2475,  and after the jump (c,d) Ax=0.2478; 

Re=250. 

 

The spatial POD modes, Fig. 21,  show the clear preference 

of the flow to shed upward or downward due to the broken the 

cylinder centerline reflection symmetry. The symmetry relation 

between the individual modes for the two cases is also striking. 

This strongly supports the proposed idea of a pitchfork 

bifurcation of the wake as the underlying governing mechanism 

(d
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of the wake transition. Although not shown for brevity, all 

higher modes show the same symmetry relation. 

Spatio-temporal POD computations were also performed, 

in the case shown here, for the velocity component ( , )u y t   

parallel to the upstream flow velocity vector associated with the 

time evolution of the flow shown in Fig. 20.  The evolution of 

the first two temporal POD modes is shown in Fig. 22. The time 

scale corresponds to that of Fig. 20. One clearly identifies the 

instance near t=60 where the unstable symmetrical wake 

switches into the stable asymmetrical state. Fig. 22 also sheds 

some light on how the wake actually makes the transition from 

the unstable to the stable state. Notice that at t=60 the first 

mode briefly „disappears‟ while coincidentally mode 2 is briefly 

dominant. At t=65 the first recovers the energy but is now 

asymmetrical while the mode 2 energy decreases but its 

frequency is clearly higher.  The result is a complete change in 

the flow structure and frequency starting near t=60.  

 

 
 

Figure 22. Temporal evolution of U-velocity  POD modes 1 

and 2, for Ax=0.2478; Re=250. 

 

While all modes were found to undergo transition at 

approximately the same time (here near t=60), the two modes 

presented here capture the key wake transition dynamics. Based 

on the POD singular values, these modes carry over 95% of the 

„energy‟. The foregoing brief presentation on POD analysis 

shows the potential for the approach as a tool for in-depth 

„visualization‟ of the wake dynamics. The analysis can even be 

carried further. POD modes provide the capability to represent 

the flow a small number of modes in a low order model as have 

been done, for instance, by Mureithi et al. (2009). Their POD 

based low order model made possible an in-depth study of the 

wake dynamics for the case of Re=200 presented in Fig. 16 

here. In particular, the simple model could reproduce the 

observed bifurcations including the chaotic state and period-

doubling bifurcation for large forcing amplitudes. 

CONCLUSIONS 
This computational study deals with a systematic 

investigation of flow around a cylinder forced to oscillate in-

line with the main stream. Nine Reynolds numbers (from 

Re=60-350) and two frequency ratios are considered, and time-

mean (TM) and rms values of force coefficients were plotted 

against oscillation amplitude Ax.  

 With increasing Re at a fixed frequency ratio, the general 

trend was that both TM and rms curves shifted to smaller Ax 

values.  

 With the higher frequency ratio of 0.9, all TM and rms 

curves shifted to smaller Ax values. 

 Jumps between two solutions were found in all cases for the 

TM of lift and torque. 

 Post-jump solutions are mirror images of pre-jump 

solutions. 

 POD analysis confirms that the reflection-symmetry relation 

is present at all orders and between individual modes. The 

temporal POD modes also show the transition of the wake 

flow to the bifurcated state. 

In this study only two frequency ratios were investigated, 

due to the huge amount of computational work involved. 

Further investigation on the effect of frequency ratio is needed.  
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