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ABSTRACT  
 
It is known theoretically [1-3] that infinitely long fluid loaded 
plates in mean flow exhibit a range of unusual phenomena in 
the 'long time' limit. These include convective instability, 
absolute instability and negative energy waves which are 
destabilized by dissipation. However, structures are necessarily 
of finite length and may have discontinuities. Moreover, linear 
instability waves can only grow over a limited number of 
cycles before non-linear effects become dominant. We have 
undertaken an analytical and computational study to investigate 
the response of finite, discontinuous plates to ascertain if these 
unusual effects might be realized in practice. 
 
Analytically, we take a "wave scattering" [2,4] --as opposed to 
a "modal superposition" [5] -- view of the fluttering plate 
problem. First, we solve for the scattering coefficients of 
localized plate discontinuities and identify a range of parameter 
space, well outside the convective instability regime, where 
over-scattering or amplified reflection/transmission occurs. 
These are scattering processes that draw energy from the mean 
flow into the plate. Next, we use the Wiener-Hopf technique to 
solve for the scattering coefficients from the leading and 
trailing edges of a baffled plate. Finally, we construct the 
response of a finite, baffled plate by a superposition of infinite 
plate propagating waves continuously scattering off the plate 
ends and solve for the unstable resonance frequencies and 
temporal growth rates for long plates.  
 
We present a comparison between our computational results 
and the infinite plate theory. In particular, the resonance 
response of a moderately sized plate is shown to be in excellent 
agreement with our long plate analytical predictions. 
 

INTRODUCTION 
 
The interaction of a flexible panel with an ideal flow is a 
fundamental problem for many engineering systems and has 
received considerable attention in recent years. Several distinct 
approaches to the problem can be identified in the literature:   
 
a) For walls of finite length, the Galerkin method [5,6] has been 
used to identify the stability boundaries and unstable mode 
shapes by expanding the wall response in terms of the 
orthogonal modes of the corresponding in-vacuo elastic plate. 
b) Infinitely long plates have been studying using a travelling 
wave approach [7,1] based on the stability properties of the 
dispersion equation of the coupled fluid-structure system. c) In 
another approach, direct computational simulation [8] of the 
unsteady fluid-loaded plate equations is undertaken. d) More 
recently, ‘long plate asymptotics’ have been used [3,2] to build 
the finite plate response using the propagating waves of the 
corresponding infinite system. e) Finally, a hybrid 
analytical/computation eigenvalue method has most recently 
been used [9] to directly determine the stability properties of 
inhomogeneous finite structures.  
 
The aim of this conference paper is to report recent results 
obtained by applying the approach d) via a comparison with 
direct computational studies of the long time linear response in 
the manner of the approach c). This is accomplished by a 
discussion of ‘over-scattering’ of propagating waves by plate 
discontinuities inspired by the recent work of [4], which 
provides an insightful bridge between the concepts of local 
instability and global instability.  
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THE INFINITE FLOW-LOADED PLATE 
 

 
FIGURE 1: INFINITELY LONG FLUID-LOADED PLATE 

CONFIGURATION. 
 
The linearized, non-dimensional equations for a line driven 
fluid-loaded plate with tension and spring foundation in mean 
(irrotational, incompressible) flow (FIGURE 1),  are [1,2]: 
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(1) 

 
where η is the plate displacement, p the fluid pressure and φ the 
fluid potential.  Lengths have been non-dimensionalized by 
m/ρf , and time is non-dimensionalized by m5/2/ρf

2B1/2 , where m 
is the linear density of the plate, ρf is the fluid density and B is 
the plate bending stiffness. The parameter α equals 1 or 2 for 
one-sided or two-sided fluid loading respectively. T and λ are 
the non-dimensional tension and spring foundation constant, 
respectively. For the case where T=λ=0 and the bending 
stiffness is the only restoring force in the plate, the non-
dimensional speed U is the sole parameter governing this 
system of equations. 
 
Considering solutions of the form ( ) ( ), expx t A ikx i tη ω= −  
the dispersion relation for waves on an infinite elastic plate is  
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where ( ) 2k kγ ≡ is defined as positive on the real k-axis.  
 
The wave energy, which is the amount of work done to build up 
a wave from rest, is given by [10] 
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Positive energy waves (PEWs) have positive ‘activation 
energy’ (i.e., net energy required from an external agency to 
create a steady state wave from rest) and behave 
conventionally.  Negative energy waves (NEWs) have negative 
‘activation energy’ and their generation results in a net decrease 
in the energy of the fluid loaded plate system. NEWs are 
destabilized by damping and, more crucially, are responsible 
for the phenomenon of ‘over-scattering’ from plate 
discontinuities discussed in the next section. 
 
The wave flux for a travelling wave is given by the product 
between the wave energy and the group velocity [1]: 
 

w w gJ E c= . (4) 
 
The wave impedance, defined as the power carried by a unit 
plate velocity amplitude, follows directly from the expression 
for the wave flux 
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For flow velocities larger than a critical value, cU U> , the 
plate is absolutely unstable. For cU U< , the causal response 
has three distinct frequency regimes [1] (FIGURE 2): 
• pω ω> : Absolute stability: two conventional propagating 

waves ( 1k + and 1k − ),
 
and two conventional evanescent waves, 

( 2k +  and 2k − ). Here, superfixes + and – refer to waves found 
downstream and upstream, respectively, of a point scatterer 
or drive point. 

• s pω ω ω< < : Neutral stability: four propagating waves, two 

of which are PEWs ( 1k +

 and 1k − ) and two, NEWs ( 2k +  and 

2k − ). 
• sω ω< : Convective instability: one exponentially increasing 

wave ( 1k + ), one exponentially decaying wave ( 2k + ), and two 
propagating waves, one of which is a PEW ( 1k − ) and one, a 
NEW ( 2k − ). The two downstream travelling wavenumbers 

1k +  and 2k +  are complex conjugate pairs with an associated 
phase speed of U to leading order in ω. 
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FIGURE 2: DISPERSION DIAGRAM FOR U=0.05, T=0.8, λ=0. 

 
 

SCATTERING FROM PLATE DISCONTINUITIES 
 
Structural discontinuities in the fluid loaded plate are modeled 
as multi-pole loads applied to the corresponding continuous 
plate [11], 
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where the mf∆ ’s are the non-dimensional jump in shear force, 
moment, slope and displacement (m=0-3, respectively) at the 
discontinuity located at sx x= . 
 
The multi-pole strengths are determined by enforcing the 
structural edge conditions at the discontinuity. The scattered 
field is expressed as a sum over the one-sided multi-pole 
Greens functions of the fluid loaded plate 
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and the dispersion function ( ),D k ω  is given in (2). In our 

notation for the one-sided greens functions, ( )j
xG +  signifies the 

jth differential with respect to the source variable sx , the first 
derivative with respect to the receiver variable x defined over 
positive (+) sx x− . The one-sided Greens functions are 
composed of both far field propagation terms generated by the 
roots of the dispersion equation and by near-field terms 
generated by the branch line integrals representing fluid 
loading. 
 
We present our results in terms of the power-normalized 
scattering coefficients at the plate discontinuity which represent 
the ratio of scattered to incident wave-powers. They are related 
to the wave amplitude through the wave impedances of the 
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scattered and incident waves defined in (5) as  
 

2n
nm nmw

m
w

ZS S
Z

= , (9) 

 
where, m and n represent the incident and scattered waves 
respectively.   
 
The total energy is conserved during the scattering process and 
the net power scattered is equal to the incident power, as long 
as the proper sign of the wave energy is retained in the wave 
impedance. As a result, an incident positive energy wave may 
‘over-scatter’ into another positive energy wave with larger 
power if one or more negative energy waves are also generated 
during the scattering process. 

EXAMPLE: BREAK IN PLATE 
 
A break or “closed crack” in the plate at 0x =  is produced by 
imposing a zero moment and zero shear force structural 
condition to both sides of a joint. It is equivalent to applying 
quadrupole and octupole loads with the following strengths: 
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 (10) 
where inck  is the incident wavenumber. 
 
As shown in FIGURE 3, this type of discontinuity is highly 
transmissive for waves incident from the upstream (e.g. 
wavenumber 1k + ). This can be seen directly in the spatial 
response in FIGURE 3b (note how the total deflection in 0x <  
is only slightly distorted by the small-amplitude reflected 
waves), and can also be seen in the corresponding FIGURE 3a, 
where the power-normalized transmission coefficient for 1k +  is 
very close to unity, while those for the other waves are at least 
10 dB lower.  
 
The wave impedance of a downstream propagating wave is 
dominated by the fluid based fluxes in the frequency range 
under consideration. As a result, the structural break in the plate 
does not present a significant impedance change and the 
incident wave is transmitted virtually intact. 
 

In contrast, waves incident from downstream are over-
transmitted and propagate downstream (e.g. wavenumber 1k − ) 
at significantly amplified levels over the range of frequencies 
that support negative energy waves ( pω ω< ). This can be seen 
by the significantly larger wave amplitudes in the transmitted 
region 0x <  (FIGURE 3b), and indeed over-reflection into 

0x >  is also visible. This corresponds to the power-normalized 
reflection and transmission coefficients in the corresponding 
FIGURE 3a; for the frequency considered ( 0.001ω = ) the 
transmitted wave 1k +  and the reflected wave 1k −  have 
amplitudes significantly greater than unity. 
 
The power sum of all the waves scattered is represented by the 
dashed line in the FIGURE 3a and is identically equal to 1 
(0dB). The generation of negative energy waves during the 
scattering process has therefore resulted in the ‘over-scattering’ 
of positive energy waves. 
 
 

FINITE PLATES AND UNSTABLE RESONANCE 
GROWTH 

LINEAR COMPUTATIONAL STUDIES OF FINITE 
PLATES IN A BAFFLE 
 
The discretization scheme for our computational studies 
consists of Finite Differences to 4th order in space for the 
structure, constant Boundary Elements for the fluid and an 
explicit ‘leapfrog’ time-stepping scheme consisting of 2nd order 
central differences in time [12].  
 
We consider a baffled plate with T=λ=0 with clamped 
boundary conditions at both edges and apply an impulse 
consisting of a half-sine wave with frequency pω ω=  at the 
midpoint of the plate. For the example of a plate with half 
length L=250 shown in FIGURE 4, we observe the following: 
 
• Downstream travelling disturbances grow in amplitude as 

they propagate and are convected at roughly the flow speed 
U. 

• Upstream travelling disturbances are slower and are highly 
dispersive. 

• Both upstream and downstream boundaries reflect incident 
disturbances with increased amplitudes. 

• For large time, the initial impulse becomes highly dispersed 
and the plate response resembles a standing wave with 
exponentially increasing amplitude. 
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FIGURE 3: SCATTERING FROM A CLOSED CRACK ON INFINITE PLATE FOR U=0.05, T=2U2, λ=0. a) POWER NORMALIZED 

SCATTERING COEFFICIENTS, AND RESULTING b) SPATIAL RESPONSE FOR UNIT INCIDENT WAVES (DASHED LINE) WITH A 
TIME HARMONIC FREQUENCY OF ω=0.001 INCIDENT FROM THE UPSTREAM AND DOWNSTREAM. 

The transition from transient to steady state behavior can be 
observed in the wavenumber spectrogram of FIGURE 5b. It 
consists of a plot of the magnitude of the spatial Fourier 
transform of the plate displacement at discrete time steps. The 
wavenumber spectrum at each time step has been normalized 
by its maximum value at that time step. The discrete spots in 
wavenumber at early time represent the scattering of the initial 
impulse at the plate boundaries. After about fifteen round-trips, 
the initial disturbances have sufficiently dispersed to allow for a 
more continuous, or steady state, wavenumber signature to 
emerge. 
 
Immediately following the initial excitation, the disturbances 
travelling back and forth on the plate carry a range of 
wavenumbers and frequencies. However, each wavenumber-
frequency pair falls on the dispersion curve for the equivalent 
infinite plate as shown in FIGURE 5a. The discrete data points 

in FIGURE 5a correspond to peaks in the spatial and temporal 
Fourier Transforms of the plate displacement field taken over  
the entire plate length and over successive time intervals 
corresponding to a single round-trip travel time of the pulse.  
 
Each set of three circles of the same color represents the 
spectral content of the response over the same interval. For 
instance, the three data points in red correspond to the plate 
response taken over an interval of time corresponding to the 
first round trip performed by the impulse (i.e., for 

40 1.6 10t< < × ), the set of points in blue correspond to the 
second round trip, and so forth, culminating in the data points 
in magenta which correspond to an interval of response taken 
around the 53 10t = ×  time mark. 
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FIGURE 4: SNAPSHOTS OF NORMALIZED PLATE DISPLACEMENTS FOR U=0.05, L=250, T=0, λ=0. 

 

 
FIGURE 5: COMPARISON BETWEEN FINITE-PLATE COMPUTATIONAL RESULTS AND THE INFINITE PLATE THEORY FOR 

U=0.05, T=λ=0 AND L=250. a) INFINITE PLATE DISPERSION PLOT OVERLAID WITH THE FREQUENCY-WAVENUMBER 
CONTENT OF THE FINITE PLATE RESPONSE AT DISCREET TIME INTERVALS. b) NORMALIZED WAVENUMBER 

SPECTROGRAM OF FINITE PLATE RESPONSE AS A FUNCTION OF TIME. DARKER HUES REPRESENT HIGHER SPECTRAL 
CONTENT. 
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Within three to four round trips, the linear response asymptotes 
to a single frequency and single temporal growth rate for all 
waves. Spatially, this ‘steady state’ resembles a standing wave 
pattern formed by the 1k + , 1k −

 and 2k −  waves. This complex 
resonance frequency is unrelated to the maximum growth 
frequency of the infinite plate and is a function of plate length. 
It corresponds exactly to the complex resonance frequency 
predicted by our infinite plate based analytics described in the 
next sub-section. 

ANALYTICAL STUDY OF TEMPORALLY UNSTABLE 
RESONANCE IN LONG, BAFFLED PLATES 
 
 

 
FIGURE 6: POWER NORMALIZED REFLECTION 

COEFFICIENTS FOR THE LEADING AND TRAILING EDGES 
OF A BAFFLED PLATE FOR U=0.05, T=λ=0. 

 
Following the approach outlined in [2] and [4], we solve for the 
reflection matrix from the leading and trailing edges of a 
clamped-clamped plate in an infinite baffle using the Wiener-
Hopf technique. We find that the plate over-reflects at both the 
leading and trailing edges for all frequencies, pω ω< , over 
which negative energy exists, irrespective of the presence of 
convectively unstable waves (FIGURE 6). 
 
These reflection matrices, combined with the round trip 
propagation matrices of the plate, yield an equation for the 
linear response of a finite plate. The condition for resonance 
follows directly from the roots of the related eigenvalue 
equation. The approach is described in great detail in an earlier 
publication [2] by one of the co-authors and will not be 
repeated here.  
 
We find that for a given plate length, there are a discrete set of 
complex frequencies that have positive imaginary parts and that 
result in temporally unstable resonance. These unstable 
resonances are limited to the frequency range over which 
negative energy waves exist, and over which the plate edges 
over-reflect. 
 
For the particular plate length and configuration under 
consideration, there exist five resonance frequencies with 
positive imaginary parts as shown in the left hand table in 
FIGURE 7. The resonance frequency with the largest positive 

imaginary part is expected to dominate the response of a finite 
plate for large time.  This is confirmed by our computational 
results as shown in the right hand table in FIGURE 7. 
 

 
FIGURE 7: COMPARISON BETWEEN ANALYTICAL 
PREDICTIONS AND COMPUTATIONAL RESULTS FOR 
MOST UNSTABLE RESONANCE FREQUENCY AND 
TEMPORAL GROWTH RATE FOR U=0.05, T=λ=0 AND L=250. 
 
 
CONCLUSIONS 
 
The presence of negative energy waves (NEW) leads to over-
scattering from discontinuities and edges and is responsible for 
unstable resonance growth in finite plates. The unstable 
behavior of long, finite plates can be captured by the use of 
infinite plate theory (propagation properties of waves), 
combined with scattering coefficients of edges obtained from 
semi-infinite theory. 
 
Further work on the effects of nonlinear terms, and on a full 
range of edge conditions (including a free trailing edge with 
wake) is well underway.  
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